1. Find resistance between points A and B.
2. Two inductor are connected as shown in figure. Mutual inductance between the inductor is M. Equivalent self-inductance of the circuit is.

\[L_{eq} = L_1 + L_2 + M \]
\[L_{eq} = L_1 + L_2 - M \]
\[L_{eq} = L_1 + L_2 + 2M \]
\[L_{eq} = L_1 + L_2 - 2M \]

Ans. (2)

3. Consider a conducting rod of length $l = 1$ m rotating in horizontal earth magnetic field $B_0 = 3.9 \times 10^{-5}$ T about one end in vertical plane passing through east west direction with angular speed $\omega = 5$ rad/sec.

Then potential difference between the both ends of the rod will be:

\[(1) \quad 9.75 \times 10^{-5} \text{ V} \]
\[(2) \quad 3.75 \times 10^{-5} \text{ V} \]
\[(3) \quad 11.75 \times 10^{-5} \text{ V} \]
\[(4) \quad 5.75 \times 10^{-5} \text{ V} \]

Ans. (1)

Sol. Potential difference between the ends of rod $= \frac{1}{2} B_0 l \omega r^2 = \frac{1}{2} \times 3.9 \times 10^{-5} \times 5 \times 1^2 = 9.75 \times 10^{-5}$ V

4. Formula of Reynolds number is (ρ - density of the fluid, u - flow speed, D - diameter of pipe, η - coefficient of viscosity of the fluid)

\[(1) \quad \frac{\rho u D}{\eta} \]
\[(2) \quad \frac{\rho D}{u} \]
\[(3) \quad \frac{\eta D}{u} \]
\[(4) \quad \frac{\rho u}{D} \]

Ans. (1)

5. Dimension formula of mutual inductance is:

\[(1) \quad ML^2T^{-2}A^{-2} \]
\[(2) \quad ML^2T^{-2}A^{-2} \]
\[(3) \quad ML^2T^{-2}A^{-2} \]
\[(4) \quad ML^2T^{-2}A^{-2} \]

Ans. (2)
6. Two parallel wires of length 1 m and other is infinite are lying at a distance of 2 m. If the current flowing in each wire is 5 ampere then the force between them will be—

\[\text{Ans. (1)} \]

\[\text{Sol. } F = \frac{\mu_0 I_1 I_2}{2\pi d} = 2.5 \mu N \]

7. The ratio of rotational kinetic energy to the total kinetic energy of a rolling solid sphere

\[\text{Ans. (1)} \]

\[\text{Sol. } \frac{\text{K.E.}_{\text{rotal}}}{\text{K.E.}_{\text{total}}} = \frac{\frac{1}{2} I \omega^2}{\frac{1}{2} m v^2 + \frac{1}{2} I \omega^2} = \frac{1}{2} \left(\frac{1}{2} \frac{k^2}{R^2} \right) \]

8. Arrange the EM waves according to increasing order of wavelength.

\[\text{Ans. (3)} \]

\[\text{Sol. } E = \frac{hc}{\lambda}, \quad E_{\lambda_{\text{min}}} = \frac{1}{\lambda_{\text{min}}} \]

Energy of proton

\[E_{\text{gamma}} > E_{\text{ray}} > E_{\text{visible}} > E_{\text{proton}} \]

wavelength of proton

\[\lambda_{\text{gamma}} < \lambda_{\text{ray}} < \lambda_{\text{visible}} < \lambda_{\text{proton}} \]

9. Find charge on 15 \(\mu \)F capacitor

\[10 \mu F, 15 \mu F, 20 \mu F, 13 V \]
10. A light source is present at depth $d = \sqrt{7}$ meter from water surface in a pond. r.f. of water is $\frac{4}{3}$. Calculate maximum area of water surface from which light rays will come out in air.

(1) πm^2
(2) $7 m^2$
(3) $9 \pi m^2$
(4) $11 \pi m^2$

Ans. (3)

Sol.

$$\begin{align*}
\sin \theta &= \frac{\mu_{w}}{\mu_{l}} = \frac{3}{4} \\
\theta &= \sin^{-1} \left(\frac{3}{4} \right) \\
R &= \frac{3}{\sqrt{7}} \\
A &= \pi R^2 = 9\pi m^2
\end{align*}$$
11. A bar magnet of magnetic moment $M = 2 \times 10^6$ A-m2 is rotated from $\theta = 0$ to $\theta = 60^\circ$ in uniform magnetic field $B = 14 \times 10^{-4}$ Tesla. The work done against magnetic field is:

(1) 14 J
(2) 7 J
(3) 1.4 J
(4) 140 J

Ans. (1)

Sol. $W = U_i - U_f$

$= (-MB \cos 60^\circ) - (-MB \cos 0^\circ)$

$= MB \left(1 - \frac{1}{2}\right)$

$= 2 \times 10^6 \times 14 \times 10^{-5} \times \frac{1}{2}$

$= 14$ Joule

12. A ball of mass 200 gram moving with velocity 15 m/s collides to a bat and returns with same speed in reverse direction, calculate the impulse given by bat to ball:

(1) 2 N – sec
(2) 4 N – sec
(3) 6 N – sec
(4) 8 N – sec

Ans. (3)

Sol. $I = P_f - P_i = (mv) - (-mv)$

$= 2 mV$

$= 2 \times (200 \times 10^{-3}) \times 15$

$= 6$ N – sec

13. Two particles are thrown upwards with a time interval of 2 sec, with same speed 50 m/s. How much later from first one, particles will collide in mid air:

(1) 2 sec
(2) 4 sec
(3) 6 sec
(4) 8 sec

Ans. (3)

Sol. After 2 sec.

The relative position between them

$\vec{r}_{12} = \left(50 \times 2 - \frac{1}{2} \times 10 \times 2^2\right) \hat{0}$

$= 100 - 20 = 80$ m

$\vec{v}_{12} = 50 - 30 = 20$ m/s

$\vec{a}_{12} = g - g = 0$

$\Delta t = \frac{\vec{r}_{12}}{\vec{v}_{rel}} = \frac{80}{20} = 4$ sec.

Time to meet = 2 + 4 = 6 sec.
15. 10 balls are connected by light strings and are placed on a frictionless table, mass of each ball is 2 kg. When 6th ball is about to fall from the table, calculate tension in string connecting 7th & 8th ball.

\[T = (3m) \cdot a \]
\[T = 3 \times 2 \times 6 = 36 \text{ Newton} \]

Ans. (3)

Sol.
Acceleration \(a = \frac{6m}{10m} = 6 \text{ m/s}^2 \)

16. A positive feedback circuit for an amplifier to act as an oscillator –
(1) is the ‘feedback’ from output to input
(2) is the ‘feedback’ from input to output
(3) is the external ‘feedback’ from input to output
(4) is the external feedback from output to input.

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IP1A, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: 91-744-2777777, 2777700 | FAX No.: 91-022-39167222

To Know more: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RS2007PLC002429

Toll Free: 1800 258 5555 | 7340010333 | facebook.com/resonance | twitter.com/resonance | instagram.com/resonance | youtube.com/resonance | blog.resonance.ac.in

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal PAGE # 6

17. In given diagram assuming \(a_1, a_2, a_3 \) and \(a_4 \) upwards, the correct relation between them is:

\[a_1 = -2a_2 - a_3 - a_4 = 0 \]
\[2a_1 + 4a_2 + 4a_3 + a_4 = 0 \]
\[4a_1 - 2a_2 + a_3 + a_4 = 0 \]
\[4a_1 + 2a_2 + a_3 + a_4 = 0 \]

Ans. (2)

Sol.
Wall \((\text{net}) = 0\)
\[\sum F \cdot V = 0 \]
\[\sum F \cdot a = 0 \]
\[a_1 (4T) + a_2 (2T) + a_3 (T) + a_4 (T) = 0 \]
16. 64 identical charged drops of conducting liquid are combined to form a big drop. Calculate the ratio of surface charge density of a bigger drop to smaller drop.

\[\frac{\sigma_1}{\sigma_2} = \frac{4\pi R^2}{4\pi r^2} \]

(1) 2 (2) 4 (3) 6 (4) 8

Ans. (2)

Sol. From charge conservation

\[64 \times 4\pi R^2 \times \frac{1}{r} = 64 \times 4\pi r^2 \]

...(1)

from volume conservation

\[\frac{4}{3} \pi R^3 = \frac{4}{3} \pi r^3 \]

\[R = 4r \]

...(2)

From (1) & (2)

\[\frac{\sigma_1}{\sigma_2} = \frac{1}{4} \]

19. An atom emits a photon of wavelength \(\lambda = 670 \text{ nm} \), when it was at rest when atom is in motion and emits a photon in opposite direction of motion the wavelength of photon is 670.7 nm. Calculate fractional change in speed of atom :

\[\Delta \lambda = \frac{\lambda}{2} \]

(1) 0.7 670 (2) 0.7 570 (3) 0.5 470 (4) 0.3 370

Ans. (1)

Sol.

\[p = \frac{h}{\lambda} \]

\[\Delta p = \frac{\Delta \lambda}{\lambda} p \]

\[| \Delta u | = \left(\frac{\Delta \lambda}{\lambda} \right) \left(\frac{1}{v} \right) \]

\[\frac{\Delta u}{v} = \frac{0.7}{670} \]

20. A capacitor of capacitance \(C_0 \) is filled with dielectric constant \(K = 3 \) as shown.

\[\frac{C}{C_0} \]

(1) \(\frac{1}{2} \) (2) \(\frac{3}{2} \) (3) \(\frac{5}{2} \) (4) \(\frac{7}{2} \)

Ans. (2)

Sol.

\[C = \frac{C_0 A}{d} - \frac{2C_0 A}{d} \]
21. Heat energy given to Carnot engine is 300 J. Heat energy flow towards sink is 160 J. If lower temperature is 324 K, then higher temperature is:

1. 340 K
2. 430 K
3. 540 K
4. 640 K

Ans. (3)

Sol. Efficiency $\eta = 1 - \frac{T_1}{T_2} = 1 - \frac{Q_2}{Q_1}$

$Q_1 = \frac{T_{high}}{T_{low}}$

$Q_2 = \frac{300}{180} \times 324$

$T_{high} = 540 K$
BEST RANK
from Kota Classroom among all Institutes of Kota

AIR 8

CHAITANYA AGGARWAL
JEE (Advanced) 2021

Numbers that inspire Students to EXCEL

Trust of 9,50,000+ STUDENTS
Total Selections 1,78,546
All in TOP-100 350
Pool of 800+ FACULTY
Study Centres in 70+ CITIES

For Class XII Passed Students

TARGET
JEE (Main+Advanced) 2023
COURSE VISHESH (JD)

CLASS STARTS 27th June & 4th July

TARGET
JEE (Main) 2023
COURSE ABHYAAS (ED)

CLASS STARTS 27th June & 4th July

Scholarship upto 90% on the basis of JEE (Main) Percentile Score

अपनी स्कॉलरशिप जीतने के लिए अपनी जॉइंट में परसंदेह बदल आप करें: 73400-10345

Resonance Eduventures Ltd.
Kota Study Centre & Registered Corporate Office: CG Tower, A-46 & 52, IIP A, Near City Mall, Jhalawar Road, Kota (Raj.) - 324001
Tel. No.: 0744-2777772, 2777700 | CIN: U80302RJ2007PLC024529 | www.resonance.ac.in | contact@resonance.ac.in