1. A rod is in rest against a smooth vertical wall and a rough horizontal surface. Find the ratio of total reaction by wall & surface.
2. The resistance of a wire is 2Ω at 10°C and 3 Ω at 30°C. Find the temperature coefficient of resistivity.

(1) 0.022 (2) 0.025 (3) 0.033 (4) 0.05

Ans. (3)

Sol. \[R = R_0 (1 + \alpha \Delta T) \]

\[2 = R_0 (1 + 20\alpha) \]

\[3 = R_0 (1 + 30\alpha) \]

\[1 = 30\alpha \]

3. An electromagnetic wave moving along x-axis with speed C. Frequency of wave 10^10 Hz and amplitude of electric field \(E_0 = 60 \text{N/C} \). Which of the following option is correct?

(1) \[\frac{60}{C} \sin \left(2 \times 10^{10} \pi \left(t - \frac{x}{C} \right) \right) \]

(2) \[\frac{60}{C} \cos \left(2 \times 10^{10} \pi \left(t - \frac{x}{C} \right) \right) \]

(3) \[60C \sin \left(2 \times 10^{10} \pi \left(t - \frac{x}{C} \right) \right) \]

(4) \[60C \cos \left(2 \times 10^{10} \pi \left(t - \frac{x}{C} \right) \right) \]

Ans. (2)

Sol. \[|E| = \frac{E_0}{C} \]

\[\vec{E} = - (\vec{V} \times \vec{B}) \]

\[E = - \vec{V} \times \vec{B} \]

4. Angular acceleration of a body is given by \(\alpha = 6t^2 + 2t \)

If \(\vec{u}(t = 0) = 10 \text{ rad/s} \), \(\vec{u}(t = 0) = 4 \text{ rad} \)

Find \(\vec{u}(t) = \)

(1) \[4 - 10t + \frac{t^4}{2} + \frac{t^3}{3} \]

(2) \[14 - 10t + \frac{t^4}{2} + \frac{t^3}{3} \]

(3) \[16 - 10t + \frac{t^4}{2} + \frac{t^3}{3} \]

(4) \[4 - 10t + \frac{t^4}{2} + \frac{t^3}{3} \]

Ans. (1)
5. A particle travels first one third of distance with speed 11 m/s, next one third with 22 m/s and last one third with speed 33 m/s. Find the average speed.

(1) 16 m/s (2) 18 m/s (3) 20 m/s (4) 22 m/s

Ans. (2)

6. Two identical bodies are at separation d and force between them is F. If m/3 is removed from one body and added to other body, find the new force.

\[F = \frac{Gmm}{d^2} \]

(1) 6/9 F (2) 7/9 F (3) 8/9 F (4) 9/6 F

Ans. (3)

7. Find the tension in the string if there is no slipping between disc and string, radius of disc is 10 cm:

\[4 \text{ kg} \]
(1) 8 N
(2) 10 N
(3) 12 N
(4) 20 N

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No. : +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : www.Resonance.ac.in | Website : www.resonance.ac.in

Sol. \[T_r = \frac{4r^2}{\alpha} \]

\[\alpha = \frac{T}{2r}, \quad \frac{T}{2r} = 0.1 \quad 5T \]

\[2g - T = 2a = 2 \times 0.1 \times \alpha \]

\[20 - T = 0.2 \times 5T = T \]

\[20 = 2T \]

\[T = 10 \text{ N.} \]

8. C_1 is charged to 30 V then connected to C_2. Find final charge on C_2.

\[C_1 = 5 \mu F \]

\[C_2 = 10 \mu F \]

(1) 100 \mu C
(2) 200 \mu C
(3) 300 \mu C
(4) 400 \mu C

Ans. (1)

Sol. \[V = \frac{C_1V_1 + C_2V_2}{C_1 + C_2} = \frac{5 \times 30 + 0}{5 + 10} = 10 \]

\[Q_2 = C_2V = 10 \times 10 = 100 \mu C \]

9. If current through the battery is A/5 then A is : (R = 1Ω)

\[\frac{3V}{8} \]

(1) 8
(2) 10
(3) 12
(4) 14

Ans. (1)

Sol. \[R_{eq} = \frac{15}{8} \]

\[i = \frac{3}{15} = \frac{8}{5} \]

10. Water is falling from height 40 m at rate of 9×10^4 kg/hr. If 50% of potential energy is convert in electrical energy by turbine. Then how many bulb of 100 W can be light up.

Ans. (2)

Sol. \[g = \frac{9 \times 10^4 \text{kg}}{3600 \text{sec}} = 50 \text{N/m}^2 \]
\[N = 50 \]

11. If force per unit length between 2 parallel wires is \(F/l = 2 \times 10^{-6} \text{ N/m} \). Find current \(i \) in each wire.

\[\text{(1) } \sqrt{2} \text{ ampere} \quad \text{(2) } 2 \text{ ampere} \quad \text{(3) } \sqrt{3} \text{ ampere} \quad \text{(4) } 3 \text{ ampere} \]

Ans. (1)

Sol. \[F = \frac{\mu_i l}{2\pi} \]
\[2 \times 10^{-6} = \frac{2 \times 10^{-7} i^2}{2} \]
\[i = 10^{-3} \text{ m} \]

12. Two charges \(q \) & \(-q \) are separated by a distance \(d \). If electric field at the mid-point is \(E = 6.4 \times 10^6 \text{ V/m} \) and \(q = 8 \times 10^{-3} \text{ C} \) find \(d \).

\[\text{(1) } 3 \times 10^{-6} \text{ m} \quad \text{(2) } 2 \times 10^{-6} \text{ m} \quad \text{(3) } 3 \times 10^{-6} \text{ m} \quad \text{(4) } 4 \times 10^{-6} \text{ m} \]

Ans. (4)

Sol. \[E = \frac{2Kq}{d^2} = \frac{8Kq}{d^2} \]
\[6.4 \times 10^6 = \frac{8 \times 9 \times 10^9 \times 8 \times 10^6}{d^2} \]
\[d^2 = \frac{9 \times 64 \times 10^{15}}{6.4} = 9 \times 10^{15} \]
\[d = 3 \times 10^5 \text{ m} \]
14. Given cut-off voltage = 0.6 V of diode

\[V_c = V_{0.6} = 0.6 \text{ V} \]

15. In L - C - R AC circuit \(V_L = V_c = 2V_n \) and \(R = 5 \Omega \). If \(L = \frac{1}{K_0} \) then find \(K \).

\[V_L = V_c = 2V_n \]
\[R = 5 \Omega \]
\[L = \frac{1}{K_0} \]

Resonance Eduventures Ltd.
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IP1A, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-277777, 2777700 | FAX No.: +91-022-39167222
To Know more : ams@resonance.ac.in | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U803022U2907PCL024029
Toll Free: 1800 258 5555 | 7840010333

This solution was download from Resonance JEE (MAIN) 2022 Solution portal

Sol. \[V_0 = \sqrt{V_n^2 + (V_c - V_n)^2} \]

\[V_n = V_c = 2V_n \]
\[V_0 = 2V_n \]
\[220 = \frac{220}{5} = 44A \]

\[V_c = 44 = 2 \times 220 \]
\[44 = 440 \]
\[L_0 = 10 \]
\[L = \frac{10}{100} = \frac{1}{10} \]

\[K = 10 \]

16. Measured values of quantity \(x \) are 1.19 mm, 1.20 mm, 1.21 mm and 1.22 mm. Then find % error in \(x \).

\[\text{Ans.} \]

Sol. Average of \(x \) is

\[x = \frac{1.19 + 1.20 + 1.21 + 1.22}{4} = 1.205 \]

Total error in \(x \) is 0.040

\[\% \text{ error in } x = \left(\frac{0.040 \times 100}{1.205} \right) = 3.3\% \]

17. Bend width transmission will be if amplitude modulated signal is given as

\[E = 10(1 + \cos 10^6 t) \cos (10^8 t) \]

\[\text{Ans.} \]

Band width = 2f

\[\text{Ans.} \]

18. A time dependent magnetic field is present in coil. If number of turns becomes half and radius is doubled. Then electrical power dissipated becomes –
(1) Double
(2) Half
(3) Quadruple
(4) Same

Ans. (3)
Sol. Resistance of coil remains same if number of turn becomes half and radius is doubled.

\[E = \frac{N \Delta \phi}{dt} \]
\[= -\frac{N \Delta A \vec{B}}{dt} \]
\[P = \frac{E^2}{R} \]
\[P \propto \frac{N^2 A^2}{R} \propto N^2 \]
\[(12)^2 : (2)^2 = 2^2 \]

Resonance Eduventures Ltd.
Reg. Office & Corp. Office : CG Tower, A-46 & S2, IP1A, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.:+91-7442777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56777 | Website : www.resonance.ac.in | Email : contact@resonance.ac.in | CIN : U80302QR2007PLC024029

This solution was download from Resonance JEE (MAIN) 2022 Solution portal PAGE # 7

19. Drop of radius 1 \(\mu \)m is falling with terminal velocity in air. Coefficient of viscosity is \(1.8 \times 10^{-5} \) \(\text{N.s.m}^{-2} \). Find terminal velocity:

(1) \(123.4 \times 10^{-4} \) m/s
(2) \(62.4 \times 10^{-4} \) m/s
(3) \(93.4 \times 10^{-4} \) m/s
(4) \(73.4 \times 10^{-4} \) m/s

Ans. (1)
Sol.
\[\frac{4}{3} \pi r^3 \rho g - 6 \pi \eta r V = 0 \]
\[\frac{4}{3} \pi \left(\frac{1}{10}\right)^3 \rho \times 10 - 6 \pi \times 10^{-5} \times 10 \times V = 0 \]
\[V = 123.4 \times 10^{-4} \text{ m/s} \]

20. Initial internal energy of gas at A is 1560 J. Energy lost from C to A is 80 J. Work done by gas from B to C is 30 J and energy given to gas from B to C is zero. Energy given to gas from A to B is 40 J. Then work done from C to A is:

(1) 50 J
(2) -50 J
(3) -60 J
(4) 60 J

Ans. (1)
Sol. For cycle process
Total heat = \(W_{AC} + \Delta V \)
\[-60 + 40 + 0 = W_{CA} + W_{AB} + W_{BC} \]
\[-20 = W_{CA} + 0 + 30 \]
\[W_{CA} = -50 \]

21. Determine current 2kΩ resistance
For the circuit above, current through Zener diode.

(1) 1.125 mA
(2) 2.25 mA
(3) 4 mA
(4) 4.5 mA

Ans. (1)

Resonance Eduventures Ltd.
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-277777, 2777700 | FAX No.: +91-022-39167222
To Know more : smes RESO at 56677 | Website : www.resonance.ac.in | Email: contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 7840010833 info@resonance.ac.in | www.youtube.com/resonance
This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal

22. Two particles are moving with uniform acceleration \(a_1\) & \(a_2\) from rest. Their acceleration and velocity are related as \(V_2 = \frac{n^2}{m} V_1\), \(a_2 = \frac{n}{m} a_1\). Which of the following relations are correct.

(1) \(t_2 = \frac{n^2}{m} t_1\)
(2) \(t_2 = \frac{n^2}{m} \sqrt{s_1}\)
(3) \(t_2 = n^{\frac{3}{2}} t_1\)
(4) \(t_2 = n^2 t_1\)

Ans. (3)

Sol.
\[
\begin{align*}
\frac{m}{n^2} &= \frac{t_1}{t_2} \\
\frac{t_2}{t_1} &= n^{\frac{2}{3}} \\
V_1^2 &= 2a_1 s_1 \\
V_2^2 &= 2a_2 s_2 \\
m^2 &= \frac{n^2}{m} s_1 \\
s_2 &= n^2 s_1 \\
m &= \frac{n^2}{m} \sqrt{s_1}
\end{align*}
\]
BEST RANK
from Kota Classroom among all Institutes of Kota
AIR 8
CHAITANYA AGGARWAL
JEE (Advanced) 2021

Numbers that inspire Students to EXCEL

- Trust of 9,50,000+ STUDENTS*
- Total Selections 1,78,546
- All in TOP-100 350
- Pool of 800+ FACULTY
- Study Centres in 70+ CITIES

For Class XII Passed Students

TARGET
JEE (Main+Advanced) 2023
COURSE VISHESH (JD)
CLASS STARTS 27th June & 4th July

TARGET
JEE (Main) 2023
COURSE ABHYAAS (ED)
CLASS STARTS 27th June & 4th July

Scholarship upto 90%* on the basis of JEE (Main) Percentile Score

* Since 2007 | ** Students Qualified from JEE Main to JEE Advanced since 2011

For More Details Contact:
- 0744-2777772, 2777700 | CIN: U803022RL2007PLC024029 | www.resonance.ac.in | contact@resonance.ac.in