JEE (Main) 2022
PAPER-1 (B.E./B. TECH.)

COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 24 June, 2022 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS

Resonance Eduventures Ltd.
Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free: 1800 258 5555

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal
1. Let \(A = \{ z \in \mathbb{C} : 1 \leq |z - (1 + i)| \leq 2 \} \) and \(B = \{ z \in A : |z - (1 - i)| = 1 \} \). Then, \(B \):

 (A) is an empty set
 (B) contains exactly two elements
 (C) contains exactly three elements
 (D) is an infinite set

NTA Ans. (D)
Reso Ans. (D)
Sol.

Set \(A \) contains all points on minor arc \(AB \) of circle \(|z - (1 - i)| = 1 \)

2. The remainder when \(3^{2022} \) is divided by 5 is:

 (A) 1
 (B) 2
 (C) 3
 (D) 4

NTA Ans. (D)
Reso Ans. (D)
Sol.

\[
9^{1011} = (10 - 1)^{1011} = 10^\mu - 1 = 5\mu - 1
\]

\[\Rightarrow \text{remainder} = 4\]

3. The surface area of a balloon of spherical shape being inflated, increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds, it becomes 7 units, then its radius after 9 seconds is:

 (A) 9
 (B) 10
 (C) 11
 (D) 12

NTA Ans. (A)
Reso Ans. (A)
Sol.

\[
A = 4\pi r^2 \\
\frac{dA}{dt} = 8\pi r \frac{dr}{dt} = k
\]
4πr² = kt + C

at t = 0, r = 3 ⇒ 36π = C

at t = 5, r = 7 ⇒ 4π × 49 = 5k + 36π

⇒ 5K = 4π (49 – 9)
5K = 4π × 40

K = 32π

⇒ 4πr² = 32πt + 36π

⇒ r² = 8t + 9 ⇒ r² = 81 ⇒ r = 9

4

Bag A contains 2 white, 1 black and 3 red balls and bag B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random, are found to be 1 red and 1 black. If the probability that both balls come from Bag A is \(\frac{6}{11} \), then n is equal to ________ .

(A) 13 (B) 6 (C) 4 (D) 3

NTA Ans. (C)
Reso Ans. (C)

5

Let \(x^2 + y^2 + Ax + By + C = 0 \) be a circle passing through (0, 6) and touching the parabola \(y = x^2 \) at (2, 4). Then A + C is equal to ________ .

(A) 16 (B) 88/5 (C) 72 (D) – 8

NTA Ans. (A)
Reso Ans. (A)

Sol.

Equation of tangent to parabola at (2,4) \(y – 4 = m(x – 2) \)
\[
\frac{dy}{dx} = 2x \Rightarrow m = \frac{dy}{dx}_{(x=2)} = 4
\]

\[y - 4 = 4(x - 2) \Rightarrow 4x - y - 4 = 0\]

Let equation of circle be \(S + \lambda L = 0\)

\[(x - 2)^2 + (y - 4)^2 + \lambda(4x - y - 4) = 0\]

It passes through \((0,6)\) \(\Rightarrow 4 + 4 + \lambda(0 - 6 - 4) = 0\)

\[\lambda = \frac{8}{10} = \frac{4}{5}\]

\[(x - 2)^2 + (y - 4)^2 + \frac{4}{5}(4x - y - 4) = 0\]

\[x^2 + y^2 + \left(\frac{16}{5}x - 4x\right) + \left(-8y - \frac{4}{5}y\right) + \left(20 - \frac{16}{5}\right) = 0\]

\[x^2 + y^2 - \frac{4}{5}x - \frac{44y}{5} + \frac{84}{5} = 0\]

\[A = -\frac{4}{5}, B = -\frac{44}{5}, C = \frac{84}{5}\]

\[A + C = \frac{80}{5} = 16\]

6. The number of values of \(\alpha\) for which the system of equations:

\[x + y + z = \alpha\]

\[\alpha x + 2\alpha y + 3z = -1\]

\[x + 3\alpha y + 5z = 4\]

is inconsistent, is

\[
(A) \ 0 \quad (B) \ 1 \quad (C) \ 2 \quad (D) \ 3
\]

NTA Ans. (B) \hspace{1cm} Reso Ans. (B)

7. If the sum of the squares of the reciprocals of the roots \(\alpha\) and \(\beta\) of the equation \(3x^2 + \lambda x - 1 = 0\) is 15, then \(6(\alpha^3 + \beta^3)^2\) is equal to:

\[
(A) \ 18 \quad (B) \ 24 \quad (C) \ 36 \quad (D) \ 96
\]

NTA Ans. (B) \hspace{1cm} Reso Ans. (B)

Sol. \(3x^2 + \lambda x - 1 = 0\)

\[\alpha + \beta = -\frac{\lambda}{3} \quad \alpha\beta = -\frac{1}{3}\]

\[
\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 15 \quad \Rightarrow \alpha^2 + \beta^2 = 15\alpha\beta^2
\]

\[\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 15(\alpha\beta)^2\]
The set of all values of \(k \) for which \((\tan^{-1}x)^3 + (\cot^{-1}x)^3 = k\pi^3, x \in \mathbb{R}, \) is the interval:

\[A \left\{ \frac{1}{32}, \frac{7}{8} \right\} \]

\[B \left\{ \frac{1}{24}, \frac{13}{16} \right\} \]

\[C \left\{ \frac{1}{48}, \frac{13}{16} \right\} \]

\[D \left\{ \frac{1}{32}, \frac{9}{8} \right\} \]

Sol.

Let \(\tan^{-1}x = t, \) \(\cot^{-1}x = \frac{\pi}{2} - t \)

\[y = t^3 + \left(\frac{\pi}{2} - t \right)^3 \]

\[y = t^3 + \left(\frac{\pi^3}{8} - t^3 + \frac{3\pi^2}{2}t - \frac{3\pi^2}{4}t \right) \]

\[y = \frac{3\pi^2}{2}t^2 - \frac{3\pi^2}{4}t + \frac{3\pi^3}{8}, \quad t \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \]
\[
t = \frac{b}{2a} = \frac{3\pi^2}{4} = \frac{\pi}{2}
\]

Range of \(y \in \left[F\left(\frac{\pi}{4}\right), F\left(-\frac{\pi}{2}\right) \right] \)

\[
t = \frac{\pi}{4}, \quad y = \frac{\pi^3}{64} + \frac{\pi^3}{64} = \frac{\pi^3}{32}
\]

\[
t = -\frac{\pi}{2}, \quad y = -\frac{\pi^3}{8} + \frac{\pi^3}{8} = \frac{7\pi^3}{8}
\]

\[
y \in \left[\frac{\pi^3}{32}, \frac{7\pi^3}{8} \right] \Rightarrow k \in \left[1, \frac{7}{32} \right]
\]

Let \(S = \{ \sqrt{n} : 1 \leq n \leq 50 \text{ and } n \text{ is odd} \} \).

Let \(a \in S \) and \(A = \begin{bmatrix} 1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1 \end{bmatrix} \).

If \(\sum_{a \in S} \text{det}(\text{adj} A) = 100 \lambda \), then \(\lambda \) is equal to:

(A) 218 (B) 221 (C) 663 (D) 1717

NTA Ans. (B) Reso Ans. (B)

Sol. \[|\text{adj} A| = |A|^{n-1} \quad n \rightarrow \text{order of det} \]

\[|\text{adj} A| = |A|^2 \]

\[|A| = \begin{vmatrix} 1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1 \end{vmatrix} = 1(1-0) + a(a) = 1 + a^2 \]
|adjA| = (1 + a²)²

Now \(S = \begin{Bmatrix} n \mid n \leq 50 \end{Bmatrix} \), \(n \) is odd integer
\[\sum \text{det(adjA)} = \sum (a^2 + 1)^2 = \sum (n+1)^2 \]
\[= 2^2 + 4^2 + \ldots + 48^2 + 50^2 \]
\[= 2^2 (1^2 + 2^2 + \ldots + 25^2) \]
\[= \frac{25 \times 26 \times 51}{6} \]
\[= 100 \times 221 \]
\[\Rightarrow \lambda = 221 \]

10. For the function
\[f(x) = 4 \log_7 (x-1) - 2x^2 + 4x + 5, \ x > 1, \text{ which one of the following is NOT correct ?} \]

A. \(f \) is increasing in (1, \(\infty \)) and decreasing in (2, \(\infty \))
B. \(f(x) = -1 \) has exactly two solutions
C. \(f'(e) - f''(2) < 0 \)
D. \(f(x) = 0 \) has a root in the interval \((e, e+1)\)

NTA Ans. (C) Reso Ans. (C)

11. If the tangent at the point \((x_1, y_1)\) on the curve \(y = x^3 + 3x^2 + 5\) passes through the origin, then \((x_1, y_1)\) does NOT lie on the curve :

A. \(\frac{x^2 + y^2}{81} = 2 \)
B. \(\frac{y^2}{9} - x^2 = 8 \)
C. \(y = 4x^2 + 5 \)
D. \(\frac{x}{3} - y^2 = 2 \)

NTA Ans. (D) Reso Ans. (D)
The sum of absolute maximum and absolute minimum values of the function \(f(x) = |2x^2 + 3x - 2| + \sin x \cos x \) in the interval \([0, 1]\) is:

A. \(3 + \frac{\sin(1) \cos^2 \left(\frac{1}{2} \right)}{2} \)

B. \(3 + \frac{1}{2} (1 + 2\cos(1)) \sin(1) \)

C. \(5 + \frac{1}{2} (\sin(1) + \sin(2)) \)

D. \(2 + \sin \left(\frac{1}{2} \right) \cos \left(\frac{1}{2} \right) \)

NTA Ans. (B)

Reso Ans. (B)

Sol.

\(f(x) = |2x^2 + 3x - 2| + \sin x \cos x \), \(x \in [0, 1] \)

\(y = 2x^2 + 3x - 2 = (x + 2)(2x - 1) \)

\(f(x) = |(x + 2)(2x - 1)| + \frac{1}{2} \sin(2x) \)

C-1 when \(0 \leq x \leq \frac{1}{2} \)

\(f(x) = -(2x^2 + 3x - 2) + \frac{1}{2} \sin(2x) \)

\(f'(x) = -(4x + 3) + \cos(2x) \)

\(x \in [0, \frac{1}{2}) \Rightarrow 4x + 3 \in [3, 5) \Rightarrow -(4x + 3) \in [-5, -3] \)

\(f'(x) < 0 \forall x \in [0, \frac{1}{2}) \Rightarrow f(x) \downarrow \)

\(f(x)_{\text{max}} = f(0) = 2, f(x)_{\text{min}} = f(1/2) = \frac{\sin(1)}{2} \)

C-2 When \(x \in \left[\frac{1}{2}, 1 \right] \)

\(f(x) = (2x^2 + 3x - 2) + \frac{1}{2} \sin(2x) \)

\(f'(x) = 4(x + 3) + \cos(2x) \)

For \(x \in \left[\frac{1}{2}, 1 \right] \Rightarrow 4x + 3 \in [5, 7] \)

\(f'(x) > 0 \forall x \in \left[\frac{1}{2}, 1 \right] \Rightarrow f(x) \uparrow \)

\(f(0) = 2, f \left(\frac{1}{2} \right) \sin(1), f(1) = 3 + \frac{1}{2} \sin(2) \)

sum of maximum and minimum
13. If \(\{a_i\}_{i=1}^{n} \), where \(n \) is an even integer, is an arithmetic progression with common difference 1, and \(\sum_{i=1}^{n} a_i = 192 \), \(\sum_{i=1}^{n/2} a_{2i} = 120 \), then \(n \) is equal to:

- (A) 48
- (B) 96
- (C) 92
- (D) 104

Reso Ans. (B)

Sol.

\[a_1 + a_2 + a_3 + a_4 + \ldots + a_n = 192 \]
\[a_2 + a_4 + a_6 + a_8 + \ldots = 120 \ldots \ (i) \]
\[a_1 + a_3 + a_5 + \ldots = 192 - 120 = 72 \ldots \ (ii) \]

By (i) and (ii)

\[(a_2 - a_1) + (a_4 - a_3) + \ldots = 48 \]

By (ii)

\[1 + 1 + \ldots = \frac{n}{2} \text{ terms} = 48 \]

\[\Rightarrow \frac{n}{2} = 48 \Rightarrow n = 96 \]

14. If \(x = x(y) \) is the solution of the differential equation \(\frac{dy}{dx} = 2x + y^3 (y + 1)e^y \), \(x(1) = 0 \); then \(x(e) \) is equal to:

- (A) \(e^3(e^e - 1) \)
- (B) \(e^3(e^3 - 1) \)
- (C) \(e^2(e^e + 1) \)
- (D) \(e^6(e^a - 1) \)

NTA Ans. (A)

Reso Ans. (A)
Let $\lambda x - 2y = \mu$ be a tangent to the hyperbola $a^2x^2 - y^2 = b^2$. Then $\left(\frac{\lambda}{a}\right)^2 - \left(\frac{\mu}{b}\right)^2$ is equal to:

A. -2
B. -4
C. 2
D. 4

NTA Ans. (D)
Reso Ans. (D)

16. Let \hat{a}, \hat{b} be unit vectors. If \hat{c} be a vector such that the angle between \hat{a} and \hat{c} is $\frac{\pi}{12}$, and $\hat{b} = \hat{c} + 2(\hat{c} \times \hat{a})$, then $|6\hat{b}|^2$ is equal to:

A. $6(3 - \sqrt{3})$
B. $3 + \sqrt{3}$
C. $6(3 + \sqrt{3})$
D. $6(\sqrt{3} + 1)$

NTA Ans. (C)
Reso Ans. (C)

Sol.

$|\hat{b}| = \sqrt{c^2 + 4(c \times \hat{a})^2 + 0}$

$1 = c^2 + 4c^2 \sin^2 \frac{\pi}{12}$

$1 = c^2 + 4c^2 \times \left(\frac{\sqrt{3} - 1}{2\sqrt{2}}\right)^2$

$1 = c^2 + c^2 \left(\frac{4 - 2\sqrt{3}}{2}\right)$

$1 = c^2 \left(3 - \sqrt{3}\right)$

$3 + \sqrt{3} = 6c^2$

$6(3 + \sqrt{3}) = (6c)^2$
If a random variable X follows the Binomial distribution B(33, p) such that 3P(X = 0) = P(X = 1), then the value of \(\frac{P(X = 15)}{P(X = 18)} - \frac{P(X = 16)}{P(X = 17)} \) is equal to:

A. 1320
B. 1088
C. \(\frac{120}{1331} \)
D. \(\frac{1088}{1089} \)

NTA Ans. (A)
Resonance Ans. (A)

18

The domain of the function \(f(x) = \frac{\cos^{-1}\left(\frac{x^2 - 5x + 6}{x^2 - 9} \right)}{\log_e(x^2 - 3x + 2)} \) is:

A. \((-\infty, 1) \cup (2, \infty)\)
B. \((2, \infty)\)
C. \([-\frac{1}{2}, 1) \cup (2, \infty)\)
D. \([-\frac{1}{2}, 1) \cup (2, \infty) - \left\{ \frac{3 + \sqrt{5}}{2}, \frac{3 - \sqrt{5}}{2} \right\}\)

NTA Ans. (D)
Resonance Ans. (D) or (BONUS)

19

Let \(S = \left\{ \theta \in [-\pi, \pi] - \left\{ \frac{\pi}{2} \right\} : \sin \theta \tan \theta + \tan \theta = \sin 2\theta \right\} \). If \(T = \sum_{\theta \in S} \cos 2\theta \), then \(T + n(S) \) is equal to:

A. 7 + \sqrt{3}
B. 9
C. 8 + \sqrt{3}
D. 10
Sin\theta \tan\theta + \tan\theta = \sin2\theta
\tan\theta (\sin\theta + 1) - 2 \sin\theta \cos\theta = 0
\sin\theta (\frac{\sin\theta + 1}{\cos\theta} - 2\cos\theta) = 0
\sin\theta = 0 \text{ or } \sin\theta + 1 - 2 \cos^2\theta = 0
\theta = 0, \pi, -\pi
\sin\theta + 1 - 2 (1 - \sin^2\theta) = 0
2 \sin^2\theta + \sin\theta - 1 = 0
\sin\theta = -1, \frac{1}{2}
\theta = -\frac{\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}
Hence, \text{S = \{0, } \frac{\pi}{6}, \frac{5\pi}{6}\} \Rightarrow n(S) = 5
T = \sum(\theta(2)) = \cos(0) + \cos(\pi/3) + \cos(5\pi/3) + \cos(2\pi) + \cos(-2\pi)
= 1 + \frac{1}{2} + \frac{1}{2} + 1 + 1 = 4
T + n(S) = 4 + 5 = 9

20
The number of choices for \Delta \in \{ \wedge, \vee, \Rightarrow, \Leftrightarrow\}, such that (p \Delta q) \Rightarrow ((p \Delta \neg q) \vee (\neg p \Delta q)) is a tautology, is:

(A) 1 (B) 2 (C) 3 (D) 4

21
The number of one-one functions f : \{a, b, c, d\} \rightarrow \{0, 1, 2, \ldots, 10\} such that 2f(a) - f(b) + 3f(c) + f(d) = 0 is ________.

NTA Ans. 31
Reso Ans. 31

22
In an examination, there are 5 multiple choice questions with 3 choices, out of which exactly one is correct. There are 3 marks for each correct answer, -2 marks for each wrong answer and 0 mark if the question is not attempted. Then, the number of ways a student appearing in the examination gets 5 marks is ________.

NTA Ans. 40
Reso Ans. 40
Let \(\left(\frac{3}{\sqrt{a}}, \sqrt{a} \right) \), \(a > 0 \), be a fixed point in the \(xy \)-plane. The image of \(A \) in \(y \)-axis be \(B \) and the image of \(B \) in \(x \)-axis be \(C \). If \(D(3\cos \theta, a\sin \theta) \) is a point in the fourth quadrant such that the maximum area of \(\triangle ACD \) is 12 square units, then \(a \) is equal to ________.

\[\text{NTA Ans.} \quad 8 \]
\[\text{Reso Ans.} \quad 8 \]

Let a line having direction ratios 1, \(-4\), 2 intersect the lines

\[
\frac{x - 7}{3} = \frac{y - 1}{-1} = \frac{z + 2}{1} \quad \text{and} \quad \frac{x}{2} = \frac{y - 7}{3} = \frac{z}{1}
\]
at the points \(A \) and \(B \). Then \((AB)^2\) is equal to ________.

\[\text{NTA Ans.} \quad 84 \]
\[\text{Reso Ans.} \quad 84 \]

The number of points where the function

\[f(x) = \begin{cases}
2x^2 - 3x - 7 & \text{if } x \leq -1 \\
4x^2 - 1 & \text{if } -1 < x < 1 \\
x + 1 + |x - 2| & \text{if } x \geq 1,
\end{cases} \]

\([t]\) denotes the greatest integer \(\leq t \), is discontinuous is ________.

\[\text{NTA Ans.} \quad 7 \]
\[\text{Reso Ans.} \quad 8 \]

Let \(f(\theta) = \sin \theta + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin \theta + t \cos \theta) f(t) \, dt \). Then the value of \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\theta) \, d\theta \) is ________.

\[\text{NTA Ans.} \quad 1 \]
\[\text{Reso Ans.} \quad 1 \]

Let \(\max_{0 \leq x \leq 2} \left\{ \frac{9 - x^2}{5 - x} \right\} = \alpha \) and \(\min_{0 \leq x \leq 2} \left\{ \frac{9 - x^2}{5 - x} \right\} = \beta \).

\[\text{NTA Ans.} \quad 34 \]
\[\text{Reso Ans.} \quad 34 \]
28. If two tangents drawn from a point \((a, \beta)\) lying on the ellipse \(25x^2+4y^2=1\) to the parabola \(y^2=4x\) are such that the slope of one tangent is four times the other, then the value of
\[(10\alpha+5)^2+(16\beta^2+50)^2\] equals ________.

<table>
<thead>
<tr>
<th>NTA Ans.</th>
<th>Reso Ans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2929</td>
<td>2929</td>
</tr>
</tbody>
</table>

29. Let \(S\) be the region bounded by the curves \(y=x^3\) and \(y^2=x\). The curve \(y=2|x|\) divides \(S\) into two regions of areas \(R_1\) and \(R_2\).

If \(\max \{R_1, R_2\}=R_2\), then \(\frac{R_2}{R_1}\) is equal to ________.

<table>
<thead>
<tr>
<th>NTA Ans.</th>
<th>Reso Ans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

30. If the shortest distance between the lines
\[\vec{r} = (-\hat{i} + 3\hat{k}) + \lambda(\hat{i} - a\hat{j})\] and
\[\vec{r} = (-\hat{j} + 2\hat{k}) + \mu(\hat{i} - \hat{j} + \hat{k})\] is \(\frac{2}{\sqrt{3}}\), then the integral value of \(a\) is equal to ________.

<table>
<thead>
<tr>
<th>NTA Ans.</th>
<th>Reso Ans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Resonance®
Educaing for better tomorrow

Numbers that Inspire Students to EXCEL

- Trust of 9,50,000+ students
- Total Selections 1,78,546
- 800+ Faculty
- Study Centres in 70+ cities

The 10-Building Blocks of Proven & Trusted Teaching Methodology @ Resonance

Success is Assured when you Do*

200 X Practice | 20 X Testing

1500+ Hrs. Classroom Teaching
1000+ Pages Study Material
45000+ Questions Practice Problems
50+ Tests | 200+ Hrs. Testing & Assessment

The figures (approx.) shown in the graph are of 2 Years Classroom Program (XXAIA & XXCIA) & Resonance in Academic Session 2021-22. The figures vary for JEE (Main) NEET (UG) & Other Courses.

The Strong Faculty Team at Resonance Kota to deliver this successful Teaching Methodology

SCHOLARSHIP UPTO 100%
Based on JEE (Main) 2022 NTA Score (Percentile) & Scholarship Test (ResoNET)

Admission Announcement: 2022-23
Class: 5 to 12 & 12+

ResoNET 3rd & 10th July
Target: JEE (Advanced) | JEE (Main) | NEET (UG)
Pre-Foundation (V to X) | Board

Polish your subject knowledge to Shine in JEE (Advanced) 2022 with the guidance of HOD’s & Top Noth Sr. Faculty of Resonance

SPARK from 4th July 2022
Scholarship upto 90%

Resonance Edventures Ltd.
Kota Study Centre & Registered Corporate Office:
C3 Tower, A-46 & 52, IPA, Near City Mall,
Jhalawar Road, Kota (Raj) - 324005

Tel No.: 0744-2777777, 2777700
Toll Free: 1800-259-9555 | GIN: UR0309RJ200PLC024019
E-mail: contact@resonance.ac.in | visit: www.resonance.ac.in

JEE (Main)
PAPER-1 (B.E./B. TECH.)

2022

COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 24 June, 2022 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: CHEMISTRY

Resonance Eduventures Ltd.
Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free: 1800 258 5555 | www.facebook.com/ResonanceEdu | twitter.com/ResonanceEdu | www.youtube.com/resoconnect | blog.resonance.ac.in

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal
1. If a rocket runs on a fuel \((C_{15}H_{30})\) and liquid oxygen, the weight of oxygen required and \(CO_2\) released for every litre of fuel respectively are:

(Given: density of the fuel is 0.756 g/mL)

A. 1188 g and 1296 g
B. 2376 g and 2592 g
C. 2592 g and 2376 g
D. 3429 g and 3142 g

Ans. (C)

Sol.

\[
\text{density} = \frac{\text{mass}}{\text{volume}}
\]

mass of \(C_{15}H_{30}\) = \(d \times V = 0.756 \times 1000 = 756 \text{ gram}\)

\[C_{15}H_{30}(l) + \frac{45}{2} O_2(g) \rightarrow 15CO_2(g) + 15H_2O\]

\[
\begin{align*}
756 & \quad \frac{45}{2} \quad 756 \quad \text{mole} \\
210 & \quad \frac{2}{210} \quad 15 \quad \frac{756}{210}
\end{align*}
\]

\[
W_{O_2} = \frac{45}{2} \times \frac{756}{210} \times 32 = 2592 \text{ gram}
\]

\[
W_{CO_2} = 2376 \text{ gram}
\]
Consider the following pairs of electrons

(A) \(n = 3, \ l = 1, \ m_l = 1, \ m_s = +\frac{1}{2} \)

(b) \(n = 3, \ l = 2, \ m_l = 1, \ m_s = +\frac{1}{2} \)

(B) \(n = 3, \ l = 2, \ m_l = -2, \ m_s = -\frac{1}{2} \)

(b) \(n = 3, \ l = 2, \ m_l = -1, \ m_s = -\frac{1}{2} \)

(C) \(n = 4, \ l = 2, \ m_l = 2, \ m_s = +\frac{1}{2} \)

(b) \(n = 3, \ l = 2, \ m_l = 2, \ m_s = +\frac{1}{2} \)

The pairs of electrons present in degenerate orbitals is/are:

A. Only (A)
B. Only (B)
C. Only (C)
D. (B) and (C)

Ans. (B)

Sol.
The orbitals with similar values of \(n \) & \(\ell \) but with different value of \(m \) are degenerate.

(Orbitals with same values of \(n + \ell \) are degenerate orbitals)
3. Match List - I with List - II:

<table>
<thead>
<tr>
<th>List - I</th>
<th>List - II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) [PtCl\textsubscript{2}]2-</td>
<td>(I) sp3d</td>
</tr>
<tr>
<td>(B) BrF\textsubscript{5}</td>
<td>(II) d2sp3</td>
</tr>
<tr>
<td>(C) PCl\textsubscript{5}</td>
<td>(III) dsp2</td>
</tr>
<tr>
<td>(D) [Co(NH\textsubscript{3})\textsubscript{6}]3+</td>
<td>(IV) sp3d2</td>
</tr>
</tbody>
</table>

Choose the **most appropriate** answer from the options given below:

A. (A)-(II), (B)-(IV), (C)-(I), (D)-(III)

B. (A)-(III), (B)-(IV), (C)-(I), (D)-(II)

C. (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

D. (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Ans (B)

Sol.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Hybridisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) [Pt(Cl)\textsubscript{2}]2-</td>
<td>(III) dsp2</td>
</tr>
<tr>
<td>(B) BrF\textsubscript{5}</td>
<td>(IV) sp3d2</td>
</tr>
<tr>
<td>(C) PCl\textsubscript{5}</td>
<td>(I) sp3d</td>
</tr>
<tr>
<td>(D) [Co(NH\textsubscript{3})\textsubscript{6}]3+</td>
<td>(II) d2sp3</td>
</tr>
</tbody>
</table>
For a reaction at equilibrium:

\[A(g) = B(g) + \frac{1}{2} C(g) \]

the relation between dissociation constant \(K \), degree of dissociation \(\alpha \) and equilibrium pressure \(p \) is given by:

\[K = \frac{\alpha^3 \, p^\frac{1}{2}}{(1 + \frac{3}{2} \alpha)^\frac{3}{2} \, (1 - \alpha)} \]

\[K = \frac{\alpha^3 \, p^\frac{1}{2}}{(2 + \alpha)^\frac{1}{2} \, (1 - \alpha)} \]

\[K = \frac{(\alpha \, p)^\frac{3}{2}}{(1 + \frac{3}{2} \alpha)^\frac{3}{2} \, (1 - \alpha)} \]

\[K = \frac{(\alpha \, p)^\frac{3}{2}}{(1 + \alpha) \, (1 - \frac{3}{2} \alpha)^\frac{1}{2}} \]

\(\text{Ans: } (B) \)

\(\text{Sol.} \)

\[K = \frac{\alpha}{1 + \frac{\alpha}{2}} \]
\[K = \frac{\alpha \, p}{1 + \frac{\alpha}{2}} \]
\[K = \frac{2 \alpha}{(2 + \alpha)} \]
\[K = \frac{2 \alpha}{(2 + \alpha)} \]
\[K = \frac{\alpha}{(1 + \alpha) \times \frac{2 \alpha}{(2 + \alpha)} \times p} \]
\[K = \frac{\sqrt{2(\alpha)^2 p^2}}{(1 - \alpha)(2 + \alpha)^\frac{1}{2}} \]
5. Given below are two statements:

Statement I: Emulsions of oil in water are unstable and sometimes they separate into two layers on standing.

Statement II: For stabilisation of an emulsion, excess of electrolyte is added.

In the light of the above statements, choose the most appropriate answer from the options given below:

A. Both **Statement I** and **Statement II** are correct.
B. Both **Statement I** and **Statement II** are incorrect.
C. **Statement I** is correct but **Statement II** is incorrect.
D. **Statement I** is incorrect but **Statement II** is correct.

Ans. (C)

Sol. Emulsions of oil in water are unstable and sometimes they separate into two layers on standing. For stabilisation of an emulsion, a third component called emulsifying agent is usually added.

6. Given below are the oxides:

\[\text{Na}_2\text{O}, \text{As}_2\text{O}_3, \text{N}_2\text{O}_5, \text{NO, Cl}_2\text{O}_7 \]

Number of amphoteric oxides is:

A. 0
B. 1
C. 2
D. 3

Ans. (B)

Sol.

- **Acidic** \(\Rightarrow \text{Cl}_2\text{O}_7 \)
- **Basic** \(\Rightarrow \text{Na}_2\text{O} \)
- **Amphoteric** \(\Rightarrow \text{As}_2\text{O}_3 \)
- **Neutral** \(\Rightarrow \text{NO, N}_2\text{O} \)
7. Match List - I with List - II:

<table>
<thead>
<tr>
<th>List - I</th>
<th>List - II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Sphalerite</td>
<td>(I) FeCO₃</td>
</tr>
<tr>
<td>(B) Calamine</td>
<td>(II) PbS</td>
</tr>
<tr>
<td>(C) Galena</td>
<td>(III) ZnCO₃</td>
</tr>
<tr>
<td>(D) Siderite</td>
<td>(IV) ZnS</td>
</tr>
</tbody>
</table>

Choose the most appropriate answer from the options given below:

A. (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
B. (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
C. (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
D. (A)-(III), (B)-(IV), (D)-(II), (D)-(I)

Ans: (A)
Sol.

Calamine \(\text{ZnCO}_3\)
Sphalerite \(\text{ZnS}\)
Galena \(\text{PbS}\)
Siderite \(\text{FeCO}_3\)

8. The highest industrial consumption of molecular hydrogen is to produce compound element:

A. Carbon
B. Nitrogen
C. Oxygen
D. Chlorine

Ans: (B)
Sol.

The largest single use of dihydrogen is in the synthesis of ammonia (compound of nitrogen) which is used in the manufacture of nitric acid and nitrogenous fertilizers
9. Which of the following statements are correct?

(A) Both LiCl and MgCl₂ are soluble in ethanol.
(B) The oxides Li₂O and MgO combine with excess of oxygen to give superoxide.
(C) LiF is less soluble in water than other alkali metal fluorides.
(D) Li₂O is more soluble in water than other alkali metal oxides.

Choose the most appropriate answer from the options given below:

A (A) and (C) only
B (A), (C) and (D) only
C (B) and (C) only
D (A) and (D) only

Ans (A)

Sol. (i) Both LiCl & MgCl₂ have covalent character so soluble in ethanal.
(ii) LiF have low solubility due to high LaHice energy.

10. Identify the correct statement for B₂H₆ from those given below.

(A) In B₂H₆, all B-H bonds are equivalent.
(B) In B₂H₆, there are four 3-centre-2-electron bonds.
(C) B₂H₆ is a Lewis acid.
(D) B₂H₆ can be synthesized from both BF₃ and NaBH₄.
(E) B₂H₆ is a planar molecule.

Choose the most appropriate answer from the options given below:

A (A) and (E) only
B (B), (C) and (E) only
C (C) and (D) only
D (C) and (E) only

Ans (C)
B$_2$H$_6$ have 4 2c-2e bonds and 2 3c-2e bonds. Bridging bonds have larger bond length than terminal bonds. Angle between terminal bonds is more than angle between bridging bonds if all 4 terminal bonds are in one plane then bridging bonds are in perpendicular plane.

$$3\text{NaBH}_4 + 4\text{BF}_3 \xrightarrow{\text{ether}} 3\text{NaBF}_4 + 2\text{B}_2\text{H}_6$$

11. The most stable trihalide of nitrogen is:

- A. NF$_3$
- B. NCl$_3$
- C. NBr$_3$
- D. NI$_3$

Ans (A)

Sol. NF$_3$ is stable while NCl$_3$, NBr$_3$, NI$_3$ are explosive

12. Which one of the following elemental forms is not present in the enamel of the teeth?

- A. Ca$^{2+}$
- B. P$^{3+}$
- C. F$^-$
- D. P$^{5+}$

Ans (B)

Sol. Calcium and phosphate are the major component of hydroxyapatite crystal that form the inorganic portion of the teeth.
In the given reaction sequence, the major product ‘C’ is:

\[\text{C}_8\text{H}_{10} \xrightarrow{\text{HNO}_3, \text{H}_2\text{SO}_4} \text{A} \xrightarrow{\text{B}_2, \Delta} \text{B} \xrightarrow{\text{alcoholic}, \text{KOH}} \text{C} \]

\[\begin{array}{c}
\text{A} \quad \text{NO}_2 \\
\text{B} \quad \text{O}_2\text{N} \\
\text{C} \quad \text{O}_2\text{N} \\
\text{D} \quad \text{NO}_2 \\
\end{array} \]

\[\begin{array}{c}
\text{C}=\text{CH}_2 \\
\text{CH}=\text{CH}_2 \\
\end{array} \]

\[\text{Ans} \quad (B) \]

\[\text{Sol.} \]

\[\text{HNO}_3 \xrightarrow{} \text{Br} \]

Two statements are given below:

Statement I: The melting point of monocarboxylic acid with even number of carbon atoms is higher than that of with odd number of carbon atoms acid immediately below and above it in the series.

Statement II: The solubility of monocarboxylic acids in water decreases with increase in molar mass.

Choose the most appropriate option:

A. Both Statement I and Statement II are correct.

B. Both Statement I and Statement II are incorrect.
C Statement I is correct but Statement II is incorrect.

D Statement I is incorrect but Statement II is correct.

Ans (D)

Sol. The melting point of carboxylic acid has no trend as we can observe from the following data of melting point.
Methanoic acid=8ºC, Ethanoic acid=17ºC, Propanoic acid=2ºC, Butanoic acid=–6ºC, Pentanoic acid=–35ºC, Hexonic acid=–20ºC, Heptanoic acid=–8ºC, Octanoic acid=17ºC acid. Water solubility of carboxylic acid decreases as we increase the molar mass & hence hydrophobic part of the chain.

15 Which of the following is an example of conjugated diketone?

A

B

C

D

Ans (C)
The major product of the above reactions is:

\[
\text{Br} \quad \xrightarrow{(i) \text{ NaCN}} \quad \xrightarrow{(ii) \text{ OH}^-} \quad \xrightarrow{(iii) \text{ Cyclohexanone}} \quad \xrightarrow{(iv) \text{ H}_2, \text{Ni}} \quad \text{A}
\]

Ans (D)

Sol.

\[
\begin{align*}
\text{Br} & \quad \xrightarrow{\text{NaCN}} \quad \xrightarrow{\text{OH}^-} \quad \xrightarrow{\text{Cyclohexanone}} \quad \xrightarrow{\text{H}_2, \text{Ni}} \\
\text{A} & \quad \xrightarrow{} \quad \text{A}
\end{align*}
\]

Which of the following is an example of polyester?
A. Butadiene-styrene copolymer
B. Melamine polymer
C. Neoprene
D. Poly-β-hydroxybutyrate-co-β-hydroxyvalerate

Ans (D)

Sol. Poly β-hydroxybutyrate-co-β-hydroxy valerate (PHBV) : It is obtained by the copolymerisation of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid.

\[
\text{CH}_3 - \text{CH} = \text{CH}_2 - \text{COOH} + \text{CH}_3 - \text{CH} = \text{CH}_2 - \text{CH} = \text{CH}_2 - \text{COOH} \rightarrow \left(\text{O-CH-CH}_2-\text{C-O-CH-CH}_2-\text{C}\right)_{\text{n}}
\]

PHBV is used in speciality packaging, orthopaedic devices and in controlled release of drugs. PHBV undergoes bacterial degradation in the environment.

18. A polysaccharide ‘X’ on boiling with dil H$_2$SO$_4$ at 393 K under 2-3 atm pressure yields ‘Y’. ‘Y’ on treatment with bromine water gives gluconic acid. ‘X’ contains β-glycosidic linkages only. Compound ‘X’ is:

A. starch
B. cellulose
C. amylase
D. amyllopectin

Ans (B)

Sol. Cellulose, (C$_6$H$_{10}$O$_5$)$_n$

1,4-Glycosidic linkage of β-D-Glucose
Which of the following is not a broad spectrum antibiotic?

A. Vancomycin
B. Ampicillin
C. Ofloxacin
D. Penicillin G

Ans: (D)

Sol. The range of bacteria or other microorganisms that are affected by a certain antibiotic is expressed as its spectrum of action. Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria are said to be broad spectrum antibiotics. Those effective mainly against Gram-positive or Gram-negative bacteria are narrow spectrum antibiotics. If effective against a single organism or disease, they are referred to as limited spectrum antibiotics. Penicillin G has a narrow spectrum. Ampicillin and Amoxycillin are synthetic modifications of penicillins.
Ans (A)

Sol.

\[\text{Ni}^{2+} + \text{dmg} \quad \text{Ammonical Solution} \quad \rightarrow \quad \text{[Ni(dmg)]} \quad \downarrow \quad \text{Redcolour} \]

21.
Atoms of element X form hcp lattice and those of element Y occupy \(\frac{2}{3} \) of its tetrahedral voids. The percentage of element X in the lattice is \(___________. \) (Nearest integer)

Ans (43)

Sol.

\(X = 6 \) [HCP unit cell]

\(Y = \frac{2}{3} \times [\text{TV}] = \frac{2}{3} \times 12 = 8 \)

Formula = \(X_6Y_8 \Rightarrow X_3Y_4 \)

\% of \(X \) in unit cell = \(\frac{4}{7} \times 10 = 42.857 = 43 \)

22.
\(2\text{O}_3 (g) = 3\text{O}_2 (g) \)

At 300 K, ozone is fifty percent dissociated. The standard free energy change at this temperature and 1 atm pressure is \(_________________. \) \(\text{mol}^{-1} \). (Nearest integer)

[Given: \(\ln 1.35 = 0.3 \) and \(R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1} \)]

Ans (747)

Sol.

\(2\text{O}_3(g) \xrightleftharpoons{} 3\text{O}_2(g) \)

Initially

<table>
<thead>
<tr>
<th>(\text{mol})</th>
<th>(\text{O}_3)</th>
<th>(\text{O}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) mole</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1 - 0.5)</td>
<td>(\frac{3}{2} \times 0.5)</td>
<td>(0.75) mole</td>
</tr>
<tr>
<td>(0.5) mole</td>
<td>(\frac{1.5}{2})</td>
<td>(0.75) mole</td>
</tr>
</tbody>
</table>

\(K_p = \frac{(P_{\text{O}_2})^3}{(P_{\text{O}_3})^2} = \frac{(0.75)^3}{(1.25)^2} = \frac{3^3}{5^2} = \frac{27}{25} \)

\(= \frac{(0.6)^3}{(0.4)^2} = \frac{0.216}{0.16} = 1.35 \)

\(\Delta G^\circ = -RT \ln K_p \)

\(= -8.3 \times 300 \times \ln 1.35 \)

\(= -8.3 \times 300 \times 0.3 \)

\(= -747 \text{ J mole}^{-1} \)
23. The osmotic pressure of blood is 7.47 bar at 300 K. To inject glucose to a patient intravenously, it has to be isotonic with blood. The concentration of glucose solution in gL⁻¹ is ________. (Molar mass of glucose = 180 g mol⁻¹)

\[R = 0.083 \text{ L bar K}^{-1} \text{ mol}^{-1} \] (Nearest integer)

Ans (54)

Sol. For isotonic solution

\[\text{Injection } = \text{Blood} \]

\[(\text{CRT}) = 7.47 \]

\[C \times 0.082 \times 300 = 7.47 \]

\[C = 0.3 \text{ mole/lit} \]

\[= 0.3 \times 180 = 54 \text{ gram/lit} \]

24. The cell potential for the following cell

\[\text{Pt } [H_2(g)] | H^+(aq) | Cu^{2+} \text{ (0.01 M)} | Cu(s) \]

is 0.576 V at 298 K. The pH of the solution is ________. (Nearest integer)

\[\text{(Given : } E_{\text{Cu}^{2+}/Cu}^0 = 0.34 \text{ V and } \frac{2.303 \text{ RT}}{F} = 0.06 \text{ V) } \]

Ans (5)

Sol. Anode \[\Rightarrow H_2(g) \rightarrow 2H^+(aq) + 2e^- \]

Cathode \[\Rightarrow Cu^{2+}(aq) + 2e^- \rightarrow Cu(s) \]

Overall \[\Rightarrow H_2(g) + Cu^{2+}(aq) \rightarrow 2H^+(aq) + Cu(s) \]

\[E_{\text{cell}}^0 = E_{\text{Cu}^{2+}/Cu}^0 - E_{H^+/H_2}^0 = 0.34 \text{ V} \]

\[E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.06 \log [H^+]^2}{2} \frac{[Cu^{2+}]}{[Cu^{2+}]} \]

0.576 = 0.34 + 0.03 \[\log[H^+]^2 + \log[Cu^{2+}] \]

0.576 = 0.34 + 0.03 \[2pH + \log[Cu^{2+}] \]

0.236 = 0.03 \[2pH - 2 \]

7.866 = 2pH - 2

\[pH = 4.93 \approx 5 \]
25. The rate constants for decomposition of acetaldehyde have been measured over the temperature range 700 – 1000 K. The data has been analysed by plotting ln k vs \(\frac{10^3}{T} \) graph.

The value of activation energy for the reaction is ________ kJ mol\(^{-1}\). (Nearest integer)

(Given : \(R = 8.31 \) J K\(^{-1}\) mol\(^{-1}\))

\[
\ln k = \ln A - \frac{E_a}{RT}
\]

\[
\ln k = \ln A + \left[-\frac{E_a}{1000R} \right] \frac{1000}{T}
\]

Slope = \(-\frac{E_a}{1000R} \) = - 18.5

\(E_a = 18.5 \times 1000 \times 8.31 \)

\(= 153.735 \times 10^3 \) J

\(= 154 \) KJ

Ans. \((154) \)

Sol.

\(k = A e^{-\frac{E_a}{RT}} \)

26. The difference in oxidation state of chromium in chromate and dichromate salts is ________.

Ans. \((0) \)

Sol.

Chromate \(\rightarrow \) \(CrO_4^{2-} \)

\[
\begin{align*}
\text{Chromate} & \Rightarrow \text{CrO}_4^{2-} \\
\text{Dichromate} & \Rightarrow \text{Cr}_2\text{O}_7^{2-}
\end{align*}
\]
27. In the cobalt-carbonyl complex \([\text{Co}_2(\text{CO})_8]\), number of Co-Co bonds is “X” and terminal CO ligands is “Y”. \(X + Y = \underline{\hspace{2cm}}\).

Ans. \(7\)

Sol. \(\text{Co}_2(\text{CO})_8\)

No. of Co – Co bond = \(X = 1\)
No. of terminal ligand = \(Y = 6\)
\(X + Y = 7\)

28. A 0.166 g sample of an organic compound was digested with conc. \(\text{H}_2\text{SO}_4\) and then distilled with \(\text{NaOH}\). The ammonia gas evolved was passed through 50.0 mL of 0.5 N \(\text{H}_2\text{SO}_4\). The used acid required 30.0 mL of 0.25 N \(\text{NaOH}\) for complete neutralization. The mass percentage of nitrogen in the organic compound is ________.

Ans. 63

Sol.

Organic Compound (Containing Nitrogen) \(0.166\) gram

\(\text{NaOH}\)

\(\text{NH}_3\) + \(\text{CH}_3\)

Pass through \(\text{H}_2\text{SO}_4\)

Remaining Acid + \(\text{NaOH}\)

Complete neutralization

Milli eq. of \(\text{NH}_3\) = milli eq. of Used \(\text{H}_2\text{SO}_4\) = milli eq. of \(\text{NaOH}\)

\[
= 0.25 \times 30
= 75
\]

Millimole of Nitrogen = 7.5

\(W_{\text{Nitrogen}} = 7.5 \times 14 \times 10^{-3}\)

\(= 0.105\) gram

\(\% \text{ of Nitrogen} = \frac{0.105}{0.166} \times 100 = 63.25 = 63\)
Number of electrophilic centres in the given compound is ________.

\[
\text{CH}_2\text{CN} \\
\text{CH}_3
\]

Ans (3)

Sol.
Electrophilic centre are areas of low electron density. Most often they are atoms which contain a full of partial positive charge. In the given structure the –CN group, the Keto group & the double bond in conjugation with Keto group are the 3 electrophilic centres.

30

The major product ‘A’ of the following given reaction has ________ sp\(^2\) hybridized carbon atoms.

\[
\text{2,7-Dimethyl-2,6-octadiene} \xrightarrow{\text{H}^+} \text{A}
\]

Major Product

Ans (2)

Sol.
JEE (Main)
PAPER-1 (B.E./B. TECH.)

2022

COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 24 June, 2022 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: PHYSICS

Resonance Eduventures Ltd.
Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U803022RJ2007PLC024029
Toll Free: 1800 258 5555 | 734000333 | facebook.com/ResonanceEdu | twitter.com/Resonanceedu | www.youtube.com/resoWatch | blog.resonance.ac.in

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal
The bulk modulus of a liquid is 3×10^{10} Nm$^{-2}$. The pressure required to reduce the volume of liquid by 2% is:

A. 3×10^8 Nm$^{-2}$
B. 9×10^8 Nm$^{-2}$
C. 6×10^8 Nm$^{-2}$
D. 12×10^8 Nm$^{-2}$

Ans. C

Sol.

$$B = -\frac{\Delta P}{\frac{\Delta V}{V}}$$

$$\Delta P = B \left(-\frac{\Delta V}{V} \right)$$

$$= 3 \times 10^{10} \times \left(2 \times \frac{1}{100} \right) = 6 \times 10^8$$

Given below are two statements: One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): In an uniform magnetic field, speed and energy remains the same for a moving charged particle.

Reason (R): Moving charged particle experiences magnetic force perpendicular to its direction of motion.

A. Both (A) and (R) are true and (R) is the correct explanation of (A).

B. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).

C. (A) is true but (R) is false.

D. (A) is false but (R) is true.

Ans. A

Sol.

A \rightarrow True

B \rightarrow True
Two identical cells each of emf 1.5 V are connected in parallel across a parallel combination of two resistors each of resistance 20 Ω. A voltmeter connected in the circuit measures 1.2 V. The internal resistance of each cell is:

A 2.5 Ω
B 4 Ω
C 5 Ω
D 10 Ω

Ans. C
Sol.

\[i = \frac{1.5}{10 + \frac{r}{2}} \]

\[V_{AB} = i \times 10 = \frac{15}{10 + \frac{r}{2}} = 1.2 \]

\[150 = 10 + \frac{r}{2} ; \quad 12.5 = 10 + \frac{r}{2} \]

\[2.5 = \frac{r}{2} \]

\[R = 5 \]

Identify the pair of physical quantities which have different dimensions:

A Wave number and Rydberg’s constant
B Stress and Coefficient of elasticity
C Coercivity and Magnetisation
D Specific heat capacity and Latent heat

Ans. D
Sol.

\[\Delta Q = ms\Delta \theta \]

\[S = J \text{ ky}^\circ\text{C} \]

\[\Delta Q = mL \]
A projectile is projected with velocity of 25 m/s at an angle \(\theta \) with the horizontal. After \(t \) seconds its inclination with horizontal becomes zero. If \(R \) represents horizontal range of the projectile, the value of \(\theta \) will be:

\[
L = \frac{\Delta Q}{m} \\
L = \frac{J}{kg}
\]

S & L are different unit.

[use \(g = 10 \text{ m/s}^2 \)]

\[
\frac{1}{2} \sin^{-1} \left(\frac{5t^2}{4R} \right)
\]

\[
\frac{1}{2} \sin^{-1} \left(\frac{4R}{5t^2} \right)
\]

\[
\tan^{-1} \left(\frac{4t^2}{5R} \right)
\]

\[
\cot^{-1} \left(\frac{R}{20t^2} \right)
\]

Ans. D

Sol.

\[
t = \frac{u \sin \theta}{g}
\]

\[
R = u \cos \theta (2t)
\]

\[
\frac{t}{R} = \frac{\tan \theta}{g(2t)}
\]

\[
\tan \theta = \frac{2gt^2}{R} \quad ; \quad \theta = \tan^{-1} \left(\frac{2gt^2}{R} \right)
\]
6. A block of mass 10 kg starts sliding on a surface with an initial velocity of 9.8 ms\(^{-1}\). The coefficient of friction between the surface and block is 0.5. The distance covered by the block before coming to rest is:

\[
\text{[use } g = 9.8 \text{ ms}^{-2}]\]

\[
\begin{align*}
\text{A} & \quad 4.9 \text{ m} \\
\text{B} & \quad 9.8 \text{ m} \\
\text{C} & \quad 12.5 \text{ m} \\
\text{D} & \quad 19.6 \text{ m}
\end{align*}
\]

Ans. B

Sol.
9.8 m/s

\[\mu = 0.5\]

\[v^2 = u^2 + 2as\]

\[0 = (9.8)^2 - 2 \times 0.5 \times 9.8 \times s\]

\[s = 9.8 \text{ m}\]

7. A boy ties a stone of mass 100 g to the end of a 2 m long string and whirls it around in a horizontal plane. The string can withstand the maximum tension of 80 N. If the maximum speed with which the stone can revolve is \(\frac{K}{\pi}\) rev./min. The value of K is:

(Assume the string is massless and unstretchable)

\[\begin{align*}
\text{A} & \quad 400 \\
\text{B} & \quad 300 \\
\text{C} & \quad 600 \\
\text{D} & \quad 800
\end{align*}\]

Ans. C

Sol.
\[T = m\omega^2 r\]

\[\omega = \sqrt{\frac{T}{mr}} = \sqrt{\frac{80}{0.1 \times 2}} = 20 \text{ rad/sec.}\]

\[= \frac{20 \times 60}{2\pi} = \frac{600}{\pi} \text{ rev/minutes}\]
8. A vertical electric field of magnitude $4.9 \times 10^5 \text{ N/C}$ just prevents a water droplet of a mass 0.1 g from falling. The value of charge on the droplet will be:

(Given $g = 9.8 \text{ m/s}^2$)

- A $1.6 \times 10^{-9} \text{ C}$
- B $2.0 \times 10^{-9} \text{ C}$
- C $3.2 \times 10^{-9} \text{ C}$
- D $0.5 \times 10^{-9} \text{ C}$

Ans. B

Sol.

$m = 0.1 \text{ gm}$

$q = ?$

$qE = mgz$

$q = \frac{0.1 \times 10^{-3} \times 9.8}{4.9 \times 10^5}$

$q = 2 \times 10^{-9}$

9. A particle experiences a variable force $\vec{F} = \left(4x^2 \hat{i} + 3y^2 \hat{j} \right)$ in a horizontal $x-y$ plane. Assume distance in meters and force is newton. If the particle moves from point $(1, 2)$ to point $(2, 3)$ in the $x-y$ plane, then Kinetic Energy changes by:

- A 50.0 J
- B 12.5 J
- C 25.0 J
- D 0 J

Ans. C

Sol. Using work energy theorem

$$W_r = K_f - K_i$$

$$\int_1^2 4xdx + \int_2^3 3y^2dy = K_f - 0$$

$$4 \int_1^2 x^2 dx + 3 \int_2^3 y^3 dy = K_f - 0$$

$$\Rightarrow K_f = 4 \left(\int_1^2 x^2 dx + \int_2^3 y^3 dy \right)$$

$$= 2(4 - 1) + (27 - 8) = 6 + 19 = 25 \text{ Joule}$$
10. The approximate height from the surface of earth at which the weight of the body becomes \(\frac{1}{3} \) of its weight on the surface of earth is:

\[\text{[Radius of earth } R=6400 \text{ km and } \sqrt{3} = 1.732] \]

A) 3840 km
B) 4685 km
C) 2133 km
D) 4267 km

\[h = \text{?} \]
\[g_{\text{eff}} = \frac{g}{3} \]
\[g = \frac{g_0}{\left(1 + \frac{n}{R}\right)^2} \]
\[\frac{1}{3} = \frac{1}{\left(1 + \frac{n}{R}\right)^2} \]
\[1 + \frac{n}{R} = \sqrt{3} \]
\[n = R(\sqrt{3} - 1) \]
\[= 6400 \times 0.732 = 4654.8 = 4685 \text{ km} \]

11. A resistance of 40 \(\Omega \) is connected to a source of alternating current rated 220 V, 50 Hz. Find the time taken by the current to change from its maximum value to the rms value:

A) 2.5 ms
B) 1.25 ms
C) 2.5 s
D) 0.25 s

\[t = \frac{T}{8} \]
\[i_0 \text{ to } i_{\text{rms}} = \frac{i_0}{\sqrt{2}} \]
12 The equations of two waves are given by:

\[y_1 = 5 \sin 2\pi(x - vt) \text{ cm} \]
\[y_2 = 3 \sin 2\pi(x - vt + 1.5) \text{ cm} \]

These waves are simultaneously passing through a string. The amplitude of the resulting wave is:

A. 2 cm
B. 4 cm
C. 5.8 cm
D. 8 cm

Ans. A

\[A_1 = 5 \]
\[A_2 = 3 \]
\[\phi = 2\pi \times 1.5 = 3\pi \]
\[A_{\text{min}} = A_1 - A_2 \]
\[= 5 - 3 = 2 \text{ cm} \]

13 A plane electromagnetic wave travels in a medium of relative permeability 1.61 and relative permittivity 6.44. If magnitude of magnetic intensity is \(4.5 \times 10^{-2} \text{ Am}^{-1}\) at a point, what will be the approximate magnitude of electric field intensity at that point?

(Given: Permeability of free space \(\mu_0 = 4\pi \times 10^{-7} \text{ NA}^{-2}\), speed of light in vacuum \(c = 3 \times 10^8 \text{ ms}^{-1}\))

A. 16.96 Vm\(^{-1}\)
B. \(2.25 \times 10^{-2} \text{ Vm}^{-1}\)
C. 8.48 Vm\(^{-1}\)
D. \(6.75 \times 10^6 \text{ Vm}^{-1}\)

Ans. C

Sol. \(B = \mu_0 \mu H\)

\[V = \frac{C}{\sqrt{\varepsilon_0 \mu_0}} \]
\[E = VB \]
14. Choose the correct option from the following options given below:

A. In the ground state of Rutherford’s model electrons are in stable equilibrium. While in Thomson’s model electrons always experience a net force.

B. An atom has a nearly continuous mass distribution in a Rutherford’s model but has a highly non-uniform mass distribution in Thomson’s model.

C. A classical atom based on Rutherford’s model is doomed to collapse.

D. The positively charged part of the atom possesses most of the mass in Rutherford’s model but not in Thomson’s model.

Ans. C

Sol. In Rutherford model electron finally merge in nucleus.

15. Nucleus A is having mass number 220 and its binding energy per nucleon is 5.6 MeV. It splits in two fragments ‘B’ and ‘C’ of mass numbers 105 and 115. The binding energy of nucleons in ‘B’ and ‘C’ is 6.4 MeV per nucleon. The energy Q released per fission will be:

A. 0.8 MeV

B. 275 MeV

C. 220 MeV

D. 176 MeV

Ans. D

Sol.

\[
A^{220} \rightarrow B^{105} + C^{115}
\]

\[
\downarrow 5.6 \quad \downarrow 6.4 \quad \downarrow 6.4
\]

\[
Q = 6.4 \times (105 + 115) - 220 \times 5.6 = 176 \text{ MeV}
\]
A baseband signal of 3.5 MHz frequency is modulated with a carrier signal of 3.5 GHz frequency using amplitude modulation method. What should be the minimum size of antenna required to transmit the modulated signal?

A. 42.8 m
B. 42.8 mm
C. 21.4 m
D. 21.4 mm

Ans. C

Sol. \[\lambda = \frac{c}{f_c} = \frac{3 \times 10^8}{3.5 \times 10^9} = 0.08571 \text{ m} \]
\[h = \frac{\lambda}{4} = \frac{3 \times 10^8}{3.5 \times 10^9} \times \frac{1}{4} \times 3000 \times 35 = 21.4 \text{ mm} \]

A Carnot engine whose heat sinks at 27°C, has an efficiency of 25%. By how many degrees should the temperature of the source be changed to increase the efficiency by 100% of the original efficiency?

A. Increases by 18°C
B. Increases by 200°C
C. Increases by 120°C
D. Increases by 73°C

Ans. B

Sol. \[n = 1 - \frac{T_2}{T_1} \]
\[0.25 = 1 - \frac{T_2}{T_1} \]
\[T_2 = 300 \text{ K (sink)} \]
\[\frac{1}{4} = 1 - \frac{300}{T_1} \]
\[T_1 = 400 \text{ K} \]

Efficiency increased by 100%, so new efficiency \(\eta = 50\% \)

\[0.5 = 1 - \frac{300}{T_1'} \]
\[\frac{300}{T_1'} = 0.5 \]
\[T_1' = 600 \]

So change in temperature = 600 – 400 = 200K
A parallel plate capacitor is formed by two plates each of area $30\pi \text{ cm}^2$ separated by 1 mm. A material of dielectric strength $3.6 \times 10^7 \text{ Vm}^{-1}$ is filled between the plates. If the maximum charge that can be stored on the capacitor without causing any dielectric breakdown is $7 \times 10^{-6} \text{ C}$, the value of dielectric constant of the material is:

$$[\text{Use } \frac{1}{4\pi \varepsilon_0} = 9 \times 10^9 \text{ Nm}^2 \text{ C}^{-2}]$$

A. 1.66
B. 1.75
C. 2.25
D. 2.33

Ans. D
Sol.
A, d, E = Given
K = ?
$q = CV$
$q = \frac{KA_\varepsilon d}{d} E \times d.$
$K = \frac{q \times d}{A_\varepsilon d E \times d}$
$= \frac{7 \times 10^{-6} \times 10^3}{30 \pi \times 10^{-4} \times 3.6 \times 10^7 \times 8.85 \times 10^{-12}}$
$= \frac{10^3 \times 7}{30 \pi \times 3.6 \times 8.85} = 2.33$

The magnetic field at the centre of a circular coil of radius r, due to current I flowing through it, is B. The magnetic field at a point along the axis at a distance $\frac{r}{2}$ from the centre is:

A. B/2
B. 2B
C. $\left(\frac{2}{\sqrt{5}}\right)^3 B$
D. $\left(\frac{2}{\sqrt{3}}\right)^3 B$

Ans. C
Magnetic field on the axis of the loop: \[B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}} \]

For \(x = R/2 \):

\[B = \frac{\mu_0 I R^2}{2\left(\frac{R^2}{4} + R^2\right)^{3/2}} = \frac{\mu_0 I R^2}{2\left(\frac{5R^2}{4}\right)^{3/2}} = \frac{B_0}{2\left(\frac{5}{4}\right)^{3/2}} = \frac{8B_0}{5\sqrt{5}} \]

20. Two metallic blocks \(M_1 \) and \(M_2 \) of same area of cross-section are connected to each other (as shown in figure). If the thermal conductivity of \(M_2 \) is \(K \) then the thermal conductivity of \(M_1 \) will be:

[Assume steady state heat conduction]

\[\begin{array}{c}
\text{100°C} & \text{80°C} \\
\hline
\text{M}_1 & \text{M}_2 \\
\hline
\text{16 cm} & \text{8 cm}
\end{array} \]

A. 10 K
B. 8 K
C. 12.5 K
D. 2 K

Ans. B

Sol.
\[H_1 = H_2 = KA \left(\frac{AO}{\pi}\right) \]
\[K_1 \propto \frac{20}{16} = \frac{80}{8} \Rightarrow K_1 = 8K \]
0.056 kg of Nitrogen is enclosed in a vessel at a temperature of 127°C. The amount of heat required to double the speed of its molecules is ________ k cal.

(Take $R = 2 \text{ cal mole}^{-1} \text{ K}^{-1}$)

Ans. 12

Sol.

$$M = \frac{N_2}{C}$$

$$V = C$$

$$T_2 = 4T_1$$

$\Delta Q = ?$

$$\Delta Q = nC\Delta T$$

$$= \frac{56}{28} \times \frac{5}{2} \times R \times 3T_1$$

$$= 5 \times 2 \times 3 \times 400$$

$$= 12000 \text{ cal}$$

$$= 12 \text{ kcal}$$

22 Two identical thin biconvex lenses of focal length 15 cm and refractive index 1.5 are in contact with each other. The space between the lenses is filled with a liquid of refractive index 1.25. The focal length of the combination is ________ cm.

Ans. 10

Sol.

$$f = 15 \text{ cm}$$

$$\mu = 1.25$$

$$\mu = 1.5 : \frac{1}{15} = \frac{(1.5 - 1)}{2} \times \frac{2}{R}$$

$$R = 15 \text{ cm}$$

$$\frac{1}{f_2} = (1.25 - 1) \times \frac{2}{15} = \frac{1}{15} \times \frac{2}{15} = \frac{1}{30}$$

$$f_2 = -30$$

$$\frac{1}{F} = \frac{1}{15} \times \frac{2}{30} + \frac{1}{30} = \frac{4}{30} = \frac{1}{30}$$

$$F = 10$$
23. A transistor is used in common-emitter mode in an amplifier circuit. When a signal of 10 mV is added to the base-emitter voltage, the base current changes by 10 µA and the collector current changes by 1.5 mA. The load resistance is 5 kΩ. The voltage gain of the transistor will be ________.

Ans. 750

Sol.

\[V_1 = 10 \text{ mV} \]
\[\Delta I_B = 10 \mu \text{A} \]
\[\Delta I_C = 1.5 \text{ mA} \]
\[R_2 = 15 \text{ kΩ} \]

\[V_G = ? \]

\[V_1 = I_B \times R_1 \]

\[R_1 = \frac{10 \times 10^{-3}}{10 \times 10^{-6}} \]

\[R_1 = 1 \text{ kΩ} \]

\[V_G = \frac{R_2 \times \beta}{R_1} \]

\[= \frac{5}{1} \times \frac{1.5 \times 10^{-3}}{10 \times 10^{-6}} \]

\[= \frac{1.5}{2} \times 1000 = 1.5 \times 500 \]

\[= \frac{3}{2} \times 500 = 750. \]

24. As shown in the figure an inductor of inductance 200 mH is connected to an AC source of emf 220 V and frequency 50 Hz. The instantaneous voltage of the source is 0 V when the peak value of current is \(\frac{\sqrt{a}}{\pi} \) A. The value of \(a \) is ________.

Ans. 242

Sol.

\[L = 200 \text{ mH} \]

\[220\text{V}, 50\text{ Hz} \]

\[V_0 = 0\text{V}, a = ? \]
\[i_0 = \frac{\sqrt{a}}{\pi} \]
\[V = i \times L \]
\[220 - i \times wL \]
\[i = \frac{220}{2\pi \times 50 \times 200 \times 10^{-3}} = \frac{220 \times 10^3 \times 10^{-4}}{\pi \times 2} = \frac{11}{\pi} \]
\[I_{\text{peak}} = \sqrt{2} \]
\[a = \frac{11}{\pi} \sqrt{2} = \frac{242}{\pi} \]

25 Sodium light of wavelengths 650 nm and 655 nm is used to study diffraction at a single slit of aperture 0.5 mm. The distance between the slit and the screen is 2.0 m. The separation between the positions of the first maxima of diffraction pattern obtained in the two cases is ________ \(\times 10^{-5} \) m.

Ans. 03.00

Sol.
- \(a = 0.5 \) mm
- \(D = 2 \) m
- \(b \sin \theta = \frac{(2n+1) \lambda}{2} \)
- \(n = 1 \Rightarrow B_1 \)
- \(\sin \theta = \frac{3 \lambda}{2b} = \frac{Y}{D} \)
- \(Y = \frac{3 \lambda D}{2b} \)
- \(d = \frac{3D}{2b} (\lambda_2 - \lambda_1) \)
- \[= \frac{3 \times 2}{2 \times 0.5 \times 10^{-3}} \times 5 \times 10^{-3} \times 10^{-6} = 30 \times 10^{-6} \text{ m} = 3 \times 10^{-5} \text{ m} \]

26 When light of frequency twice the threshold frequency is incident on the metal plate, the maximum velocity of emitted electron is \(v_1 \). When the frequency of incident radiation is increased to five times the threshold value, the maximum velocity of emitted electron becomes \(v_2 \). If \(v_2 = x v_1 \), the value of \(x \) will be ________.

Ans. 02.00
27. From the top of a tower, a ball is thrown vertically upward which reaches the ground in 6 s. A second ball thrown vertically downward from the same position with the same speed reaches the ground in 1.5 s. A third ball released, from the rest from the same location, will reach the ground in ________ s.

Answer: 03.00

Sol.
\[
\frac{1}{2}mv^2 = h(2v_y) - h(v_y) \quad \text{(1)} \\
\frac{1}{2}mv^2 = h(5v_y) - h(v_y) \quad \text{(2)}
\]

From (2)/(1)
\[
\left(\frac{v_2}{v_1} \right)^2 = 4 \\
\left(\frac{v_2}{v_1} \right) = 2
\]

28. A ball of mass 100 g is dropped from a height \(h = 10 \text{ cm} \) on a platform fixed at the top of a vertical spring (as shown in figure). The ball stays on the platform and the platform is depressed by a distance \(\frac{h}{2} \). The spring constant is \(\text{_______} \text{Nm}^{-1} \).

(Use \(g = 10 \text{ ms}^{-2} \))

Answer: 120

Sol.
\[
m \left(\frac{n + \frac{h}{2}}{2} \right) = \frac{1}{2}kx^2
\]
\[
m \times \frac{3h}{2} = \frac{1}{2}kx^2
\]
In a potentiometer arrangement, a cell gives a balancing point at 75 cm length of wire. This cell is now replaced by another cell of unknown emf. If the ratio of the emf’s of two cells respectively is 3 : 2, the difference in the balancing length of the potentiometer wire in above two cases will be ______ cm.

Ans. 25.00

Sol.

\[\frac{E_1}{E_2} = \frac{3}{2} \]

\[\frac{K \times 75}{K \times x} = \frac{3}{2} \]

\[\frac{75}{x} = \frac{3}{2} \]

\[x = \frac{75 \times 2}{3} = 50 \text{ cm} \]

Difference = 75 – 50 = 25 cm

A metre scale is balanced on a knife edge at its centre. When two coins, each of mass 10 g are put one on the top of the other at the 10.0 cm mark the scale is found to be balanced at 40.0 cm mark. The mass of the metre scale is found to be \(x \times 10^{-2} \) kg. The value of \(x \) is ________.

Ans. 0.06

Sol.

\[m = 10 \text{ gm} \]

\[2 \times 10 \times 30 = m_1 \times 10 \]

\[M_1 = 60 \text{ gm} \]

\[= 60 \times 10^{-3} \text{ kg} = 6 \times 10^{-2} \text{ kg} \]

\[= 6 \text{ Ans} \]
The 10-Building Blocks of Proven & Trusted Teaching Methodology @ Resonance

Success is Assured when you Do*

200X Practice | 20X Testing

1500+ Hrs.
Classroom Teaching

1000+ Pages
Study Material

45000+ Questions
Practice Problems

50+ Tests | 200+ Hrs.
Testing & Assessment

*As per latest Pattern of JEE (Main) & JEE (Advanced)

The figures (approx.) shown in the graph are of 2 Years Classroom Program (VIVA-III & VIVA-XII) for JEE (Advanced) & Resonance in Academic Session 2021-22.
The figures vary for JEE (Main) NEET (UG) and other Courses.

The Strong Faculty Team at Resonance Kota to deliver this successful Teaching Methodology

ResoNET
3rd & 10th July
Target: JEE (Advanced) | JEE (Main) | NEET (UG)
Pre-Foundation (V to X) | Board

Admission Announcement: 2022-23
Class: 5 to 12 & 12+

Polish your subject knowledge to Shine in JEE (Advanced) 2022 with the guidance of HODs & Top notch Faculty of Resonance

SCHOLARSHIP UPTO 100%
Based on JEE (Main) 2022 NTA Score (Percentile) & Scholarship Test (ResoNET)

Kota Study Centre & Registered Corporate Office:
C8 Tower, A-46 & 52, IPM, Near City Mall,
Jhalawar Road, Kota (Raj) • 324005

Tel No.: 0744-2777777, 2777100
Toll Free: 1800 250 5555 | CIN: U80302RJ2007PLC024029
Email: contact@resonance.ac.in | Visit: www.resonance.ac.in

To Know more:
sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029