COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 25 June, 2022 (SHIFT-1) | TIME : (9.00 a.m. to 12.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS
1. Let a circle C touch the lines $L_1 : 4x - 3y + K_1 = 0$ and $L_2 : 4x - 3y + K_2 = 0$, $K_1, K_2 \in \mathbb{R}$. If a line passing through the centre of the circle C intersects L_1 at $(-1, 2)$ and L_2 at $(3, -6)$, then the equation of the circle C is:

- A. $(x-1)^2 + (y-2)^2 = 4$
- B. $(x+1)^2 + (y-2)^2 = 4$
- C. $(x-1)^2 + (y+2)^2 = 16$
- D. $(x-1)^2 + (y-2)^2 = 16$

NTA Ans. (C)
Reso Ans. (C)

2. The value of \[\int_0^\pi \frac{e^{\cos x} \sin x}{(1 + \cos^2 x)(e^{\cos x} + e^{-\cos x})} \, dx \] is equal to:

- A. $\frac{\pi^2}{4}$
- B. $\frac{\pi^2}{2}$
- C. $\frac{\pi}{4}$
- D. $\frac{\pi}{2}$

NTA Ans. (C)
Reso Ans. (C)

Sol.

By using P - VI

\[\int_0^{\pi/2} \frac{e^{\cos x} \sin x}{1 + \cos^2 x} \, dx \]

\[= \int_0^{\pi/2} e^{\cos x} \sin x \left(1 + \cos^2 x\right) dx \]

\[= \int_0^{\pi/2} e^{\cos x} \sin x \left(1 + \frac{1}{e^{\cos x}}\right) \left(1 + \cos^2 x\right) dx \]

\[= \int_0^{\pi/2} \frac{e^{\cos x} \sin x}{1 + \cos^2 x} \, dx + \int_0^{\pi/2} \frac{\sin x}{1 + \cos^2 x} \, dx \]

\[= \int_0^{\pi/2} \frac{e^{\cos x} \sin x}{1 + \cos^2 x} \, dx + \int_0^{\pi/2} \frac{\sin x}{1 + \cos^2 x} \, dx \]

\[= \int_0^{\pi/2} \left(\frac{1}{\sin x} - \frac{1}{\cos x}\right) \, dx \]

\[= \left[\csc x - \cot x \right]_0^{\pi/2} \]

\[= \left(-\cot \left(\frac{\pi}{2}\right) + \csc \left(\frac{\pi}{2}\right) \right) - \left(-\cot 0 + \csc 0 \right) \]

\[= \pi - \frac{\pi}{2} \]

\[= \frac{\pi}{2} \]
Let \(a, b \) and \(c \) be the length of sides of a triangle \(ABC \) such that \(\frac{a + b}{7} = \frac{b + c}{8} = \frac{c + a}{9} \).

If \(r \) and \(R \) are the radius of incircle and radius of circumcircle of the triangle \(ABC \), respectively, then the value of \(\frac{R}{r} \) is equal to:

\[
\begin{align*}
A & : \frac{5}{2} \\
B & : 2 \\
C & : \frac{3}{2} \\
D & : 1
\end{align*}
\]

NTA Ans. (A)
Reso Ans. (A)
Sol.

![Diagram of a triangle with sides labeled a, b, and c, and angles at 90 degrees.]

\[
\begin{align*}
a + b &= 7k \\
b + c &= 8k \\
a + c &= 9k \\
2(a + b + c) &= 24k
\end{align*}
\]

\[
a + b + c = 12k
\]

\[
a = 4k, \ b = 3k, \ c = 5k \quad \text{(triangle is right angle at C)}
\]

\[
2R = \frac{C}{\sin C} = \frac{5k}{\sin 90^\circ} \quad \Rightarrow \quad R = \frac{5k}{2}
\]

\[
r = \frac{\Delta}{s} = \frac{1}{2} \frac{(3k)(4k)}{6k} = k
\]

\[
\frac{R}{r} = \frac{5k/2}{k} = \frac{5}{2} = 2.5
\]
Let \(f : \mathbb{N} \to \mathbb{R} \) be a function such that \(f(x+y) = 2f(x)f(y) \) for natural numbers \(x \) and \(y \). If \(f(1) = 2 \), then the value of \(\alpha \) for which

\[
\sum_{k=1}^{10} f(\alpha + k) = \frac{512}{3} (2^{20} - 1)
\]

holds, is:

\[(A) \ 2 \quad (B) \ 3 \quad (C) \ 4 \quad (D) \ 6\]

NTA Ans. (C)
Reso Ans. (C)

Sol.

\[
f(x + y) = 2f(x).f(y)
\]

Let \(f(x) = 2^{2x-1} \)

Now

\[
\sum_{k=1}^{10} f(\alpha + k) = \sum_{k=1}^{10} 2^{2(\alpha+k)-1} = 2^{2\alpha-1} \sum_{k=1}^{10} 2^{2k}
\]

\[
= 2^{2\alpha-1} \cdot \frac{\left(2^2\right)^{10} - 1}{2^2 - 1} = 2^{2\alpha+1} \cdot \frac{2^{20} - 1}{3}
\]

\[
2^{2\alpha+1} = 512 \Rightarrow 2\alpha + 1 = 9
\]

\[
\alpha = 4
\]

Let \(A \) be a 3 \times 3 real matrix such that

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
1 & 1 & -1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

and

\[
A = \begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 2
\end{pmatrix}
\]

If \(X = (x_1, x_2, x_3)^T \) and \(I \) is an identity matrix of order 3, then the system \((A - 2I)X = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} \)

has:

\[(A) \ \text{no solution} \quad (B) \ \text{infinitely many solutions} \quad (C) \ \text{unique solution} \quad (D) \ \text{exactly two solutions} \]

NTA Ans. (B)
Reso Ans. (B)
Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined as
\[
f(x) = x^3 + x - 5
\]
If \(g(x) \) is a function such that \(f(g(x)) = x, \forall x' \in \mathbb{R} \), then \(g'(63) \) is equal to \(\frac{1}{49} \).

\[\begin{array}{ll}
A & \frac{1}{49} \\
B & \frac{3}{49} \\
C & \frac{43}{49} \\
D & \frac{91}{49}
\end{array}\]

NTA Ans. (A)
Reso Ans. (A)

Sol.

\[
g'(f(x)) = \frac{1}{f'(x)} \quad \text{(1)}
\]
to find \(g'(63) \) put \(f(x) = 63 \)
\[
x^3 + x - 5 = 63
\]
\[
x(x^2 + 1) = 68 \Rightarrow x = 4
\]
Now \(f'(x) = 3x^2 + 1 \) \(\Rightarrow f'(4) = 49 \)
then the value of \(g'(63) \) is \(\frac{1}{49} \)

7. Consider the following two propositions:

\(P_1 : \neg(p \rightarrow \neg q) \)

\(P_2 : (p \land \neg q) \land (\neg p) \lor q) \)

If the proposition \(p \rightarrow ((\neg p) \lor q) \) is evaluated as FALSE, then:

\[\begin{array}{ll}
A & \text{P1 is TRUE and P2 is FALSE} \\
B & \text{P1 is FALSE and P2 is TRUE} \\
C & \text{Both P1 and P2 are FALSE} \\
D & \text{Both P1 and P2 are TRUE}
\end{array}\]

NTA Ans. (C)
Reso Ans. (C)
8. If \(\frac{1}{2 \cdot 3^{10}} + \frac{1}{2^2 \cdot 3^9} + \ldots + \frac{1}{2^{10} \cdot 3} = \frac{K}{2^{10} \cdot 3^{10}} \), then the remainder when \(K \) is divided by 6 is:

A. 1
B. 2
C. 3
D. 5

NTA Ans. (D)
Reso Ans. (D)

Sol. \[
\frac{1}{2 \cdot 3^{10}} + \frac{1}{2^2 \cdot 3^9} + \ldots + \frac{1}{2^{10} \cdot 3} = \frac{k}{2^{10} \cdot 3^{10}}
\]
\[
\Rightarrow k = 2^5 + 2^8 \cdot 3 + 2^7 \cdot 3^2 + \ldots + 2 \cdot 3^8 + 3^9 = 3^{10} - 2^{10} = (3^5 - 2^5) (3^5 + 2^5)
\]
\[
= 211 \times 275
\]
\[
= (210 + 1) (270 + 5)
\]
\[
= (6 \lambda + 1) (6 \mu + 5)
\]
Remainder = 5

9. Let \(f(x) \) be a polynomial function such that \(f(x) + f'(x) + f''(x) = x^5 + 64 \). Then, the value of \(\lim_{x \to 1} \frac{f(x)}{x-1} \) is equal to:

(A) −15
(B) −60
(C) 60
(D) 15

NTA Ans. (A)
Reso Ans. (A)

Sol. As \(f(x) + f'(x) + f''(x) = x^5 + 64 \)
\[
\Rightarrow f(x) \text{ is a polynomial in } x \text{ with degree 5}
\]
Let \(f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e \)
\[
\Rightarrow f'(x) = 5x^4 + 4ax^3 + 3bx^2 + 2cx + d
\]
& \(f''(x) = 20x^3 + 12ax^2 + 6bx + 2c \)
Since \(f(x) + f'(x) + f''(x) = x^5 + 64 \)
\[
\Rightarrow a + 5 = 0, b + 4a + 20 = 0 \ ; \ c + 3b + 12a = 0, \ d + 2c + 6b = 0 \ & e + d + 2c = 64
\]
\[
\Rightarrow a = -5, b = 0, \ c = 60, \ d = -120, \ e = 64
\]
\[
\Rightarrow f(x) = x^5 - 5x^4 + 60x^2 - 120x + 64
\]
\[
\Rightarrow f(x) = (x-1) (x^4 - 4x^3 - 4x^2 + 56x - 64)
\]
\[
\Rightarrow \frac{f(x)}{x-1} = x^4 - 4x^3 - 4x^2 + 56x - 64
\]
\[
\lim_{x \to 1} \frac{f(x)}{x-1} = 1 - 4 - 4 + 56 - 64 = -15
\]
Let E_1 and E_2 be two events such that the conditional probabilities $P(E_1|E_2) = \frac{3}{4}$.

$P(E_2|E_1) = \frac{3}{4}$ and $P(E_1 \cap E_2) = \frac{1}{8}$. Then:

\[A \quad P(E_1 \cap E_2) = P(E_1) \cdot P(E_2) \]

\[B \quad P(E_1 \cap E'_2) = P(E_1) \cdot P(E_2) \]

\[C \quad P(E_1 \cap E'_2) = P(E_1) \cdot P(E_2) \]

NTA Ans. (C)

Reso Ans. (C)

Sol.

\[
P(E_1 \cap E_2) = \frac{1}{8} = P(E_1) \cdot P\left(\frac{E_2}{E_1}\right) = P(E_2) \cdot P\left(\frac{E_1}{E_2}\right)
\]

So \[\frac{1}{8} = P(E_1) \times \frac{3}{4}\]

$P(E_1) = \frac{1}{6}$

And \[\frac{1}{8} = P(E_2) \times \frac{1}{2}\]

$P(E_2) = \frac{1}{4}$

Now option

(1) \[P(E_1) P(E_2) = \frac{1}{6} \times \frac{1}{4} = \frac{1}{24} \neq P(E_1 \cap E_2)\]

(2) \[P(E_1 P(E_2)) = \frac{5}{6} \times \frac{3}{4} = \frac{15}{24}\]

\[P(E_1 \cap E_2) = P(E_1 \cup E_2) = 1 - P(E_1 \cup E_2)\]

\[= 1 - [P(E_1) + P(E_2) - P(E_1 \cap E_2)] = 1 - \left(\frac{1}{6} + \frac{1}{4} - \frac{1}{8}\right) = 1 - \frac{7}{24} = \frac{17}{24}\]

\[P(E \cap E_2) \neq P(E_1 P(E_2))\]

(3) \[P(E_1 \cap E_2) = P(E_2) - P(E_1 \cap E_2)\]

\[= \frac{1}{4} - \frac{1}{8} = \frac{1}{8} \neq P(E_1) P(E_2)\]

(4) \[P(E_1 \cap E'_2) = P(E_1) - P(E_1 \cap E_2)\]

\[= \frac{1}{6} - \frac{1}{8} = \frac{1}{24} = P(E_1) P(E_2)\]
Let \(A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} \). If \(M \) and \(N \) are two matrices given by \(M = \sum_{k=1}^{10} A^{2k} \) and \(N = \sum_{k=1}^{10} A^{2k-1} \), then \(MN^2 \) is:

A) a non-identity symmetric matrix
B) a skew-symmetric matrix
C) neither symmetric nor skew-symmetric matrix
D) an identity matrix

NTA Ans. (A)
Reso Ans. (A)

Sol.

\[
A^2 = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix} = -4I. \text{ (symmetric)}
\]

\& \(A^3 = -4A \) (skew symmetric)

\[M = \sum_{k=1}^{10} A^{2k} = [(-4) + (-4)^2 + (-4)^3 + \ldots + (-4)^{10}] I \]

\[= -4I, I \text{ is symmetric} \]

\[N = \sum_{k=1}^{10} A^{2k-1} = A[1 + (-4) + (-4)^3 + \ldots + (-4)^9] I \]

\[= \lambda A \text{ is skew symmetric} \]

Where \(\lambda = [1 + (-4) + (-4)^3 + \ldots + (-4)^9] \)

Now \(MN = -4A \Rightarrow A = NM \)

12. Let \(g: (0, \infty) \to \mathbb{R} \) be a differentiable function such that

\[
\int \left(\frac{x(\cos x - \sin x)}{e^x + 1} + \frac{g(x)(e^x + 1 - xe^x)}{(e^x + 1)^2} \right) dx = \frac{x g(x)}{e^x + 1} + c, \text{ for all } x > 0, \text{ where } c \text{ is an arbitrary constant. Then}:
\]

A. \(g \) is decreasing in \((0, \frac{\pi}{4}) \)

B. \(g' \) is increasing in \((0, \frac{\pi}{4}) \)

C. \(g + g' \) is increasing in \((0, \frac{\pi}{2}) \)

D. \(g - g' \) is increasing in \((0, \frac{\pi}{2}) \)
13. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be two functions defined by \(f(x) = \log_e(x^2 + 1) - e^{-x} + 1 \) and \(g(x) = \frac{1 - 2e^{2x}}{e^x} \). Then, for which of the following range of \(\alpha \), the inequality
\[
 f \left(g \left(\frac{\alpha - 1}{3} \right) \right) > f \left(g \left(\alpha - \frac{5}{3} \right) \right)
\] holds?

A. \((2, 3)\)
B. \((-2, -1)\)
C. \((1, 2)\)
D. \((-1, 1)\)

14. Let \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \) with \(a_i > 0, i = 1, 2, 3 \) be a vector which makes equal angles with the coordinate axes \(OX, OY \) and \(OZ \). Also, let the projection of \(\vec{a} \) on the vector \(3\hat{i} + 4\hat{j} \) be 7.

Let \(\vec{b} \) be a vector obtained by rotating \(\vec{a} \) with \(90^\circ \). If \(\vec{a}, \vec{b} \) and \(x \)-axis are coplanar, then the projection of a vector \(\vec{b} \) on \(3\hat{i} + 4\hat{j} \) is equal to:

A. \(\sqrt{7} \)
B. \(\sqrt{2} \)
C. \(2 \)
D. \(7 \)

NTA Ans. (D)
Reso Ans. (D)

NTA Ans. (A)
Reso Ans. (A)

NTA Ans. (B)
Reso Ans. (B)
Let \(y = y(x) \) be the solution of the differential equation \((x + 1)y' - y = e^{3x}(x + 1)^2\), with \(y(0) = \frac{1}{3} \).

Then, the point \(x = -\frac{4}{3} \) for the curve \(y = y(x) \) is:

A. not a critical point
B. a point of local minima
C. a point of local maxima
D. a point of inflection

NTA Ans. (B)
Reso Ans. (B)

If \(y = m_1x + c_1 \) and \(y = m_2x + c_2 \), \(m_1 \neq m_2 \) are two common tangents of circle \(x^2 + y^2 = 2 \) and parabola \(y^2 = x \), then the value of \(8|m_1m_2| \) is equal to:

A. \(3 + 4\sqrt{2} \)
B. \(-5 + 6\sqrt{2} \)
C. \(-4 + 3\sqrt{2} \)
D. \(7 + 6\sqrt{2} \)

NTA Ans. (C)
Reso Ans. (C)

Sol.
Let equation of tangent \(y = mx + \frac{1}{4m} \)
then is also tangent to curve
\[
\frac{0 - 0 + \frac{1}{4m}}{\sqrt{m^2 + 1}} = \sqrt{2}
\]

\[
0 = \frac{1}{16m^2} = 2(m^2 + 1)
\]

\[
32m^4 + 32m^2 - 1 = 0
\]

\[
m^2 = \frac{-32 + \sqrt{(32)^2 + 4 \times 32}}{64} = \frac{-32 + \sqrt{1024 + 128}}{64} = \frac{-32 + \sqrt{1152}}{64} = \frac{-32 + 32\sqrt{2}}{64}
\]

\[
= -4 + \sqrt{18} = 3\sqrt{2} - 4
\]

\[
|m_1m_2| = 8m^2 = 8 \times \left(-4 + \sqrt{18} \right) = 3\sqrt{2} - 4
\]
Let Q be the mirror image of the point $P(1, 0, 1)$ with respect to the plane $S: x + y + z = 5$. If a line L passing through $(1, -1, -1)$, parallel to the line PQ meets the plane S at R, then QR^2 is equal to:

A) 2
B) 5
C) 7
D) 11

Reso Ans. (B)

Sol.

$$PQ : \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{1} = \lambda$$

$$\Rightarrow \left(\frac{\lambda + 2}{2}, \frac{\lambda}{2}, \frac{\lambda + 2}{2} \right) \Rightarrow 3\lambda + 4 = 5$$

$$\Rightarrow \lambda = 2 \text{ so } T(2,1,2)$$

and $Q(3,2,3)$

Let $A(1,-1,-1)$

$$AR : \frac{x-1}{1} = \frac{y+1}{1} = \frac{z+1}{1} = t$$

$$\Rightarrow R(1 + t, -1 + t, -1 + t)$$

$$\Rightarrow -1 + 3t = 5 \Rightarrow t = 2$$

So $R(3,1,1)$

$$QR^2 = 1 + 4 = 5$$
If the solution curve $y = y(x)$ of the differential equation $y^2dx + (x^2 - xy + y^2)dy = 0$, which passes through the point $(1, 1)$ and intersects the line $y = \sqrt{3}x$ at the point $(\alpha, \sqrt{3}\alpha)$, then the value of $\log_e(\sqrt{3}\alpha)$ is equal to:

A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{12}$
D. $\frac{\pi}{6}$

Let $x = 2t$, $y = \frac{t^2}{3}$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $SA \perp BA$, where A is any point on the conic. If k is the ordinate of the centroid of the $\triangle SAB$, then $\lim_{t \to 1} k$ is equal to:

A. $\frac{17}{18}$
B. $\frac{19}{18}$
C. $\frac{11}{18}$
D. $\frac{13}{18}$
Let a circle C in complex plane pass through the points $z_1 = 3 + 4i$, $z_2 = 4 + 3i$ and $z_3 = 5i$. If $z \neq z_1$ is a point on C such that the line through z and z_1 is perpendicular to the line through z_2 and z_3, then $\arg(z)$ is equal to:

\[
A \quad \tan^{-1}\left(\frac{2}{\sqrt{5}}\right) - \pi \\
B \quad \tan^{-1}\left(\frac{24}{7}\right) - \pi \\
C \quad \tan^{-1}(3) - \pi \\
D \quad \tan^{-1}\left(\frac{3}{4}\right) - \pi
\]

NTA Ans. (B)
Reso Ans. (B)

Let C_r denote the binomial coefficient of x^r in the expansion of $(1 + x)^{10}$. If for $\alpha, \beta \in \mathbb{R}$,

\[
C_0 + 3 \cdot 2 \cdot C_2 + 5 \cdot 3 \cdot C_3 + \ldots \text{upto 10 terms} = \frac{\alpha \times 2^{11}}{2^\beta - 1} \left(C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots \text{upto 10 terms} \right)
\]

then the value of $\alpha + \beta$ is equal to ________.

NTA Ans. (Bonus)
Reso Ans. (147.5)

The number of 3-digit odd numbers, whose sum of digits is a multiple of 7, is ________.

NTA Ans. (63)
Reso Ans. (63)

Sol.
Largest digit in number = 9
Sum of three digit maximum can be = 27
Hence sum of digit can be = 7, 14, 21

Now
\[
\begin{array}{ccc}
| & a_1 | a_2 | a_3 | & a_1 + a_2 + a_3 = 7, 14, 21 \\
C-1 & & & & & \\
& a_1 + a_2 + a_3 = 7 & a_3 = \text{odd} & C \\
& a_3 = 1 & (a_1, a_2) = (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 0) & \text{Total number} = 6 \\
& a_3 = 3 & (a_1, a_2) = (1, 3), (2, 2), (3, 1), (4, 0) & \text{Total number} = 4 \\
& a_3 = 5 & (a_1, a_2) = (1, 1), (2, 0) & \text{Total number} = 2 \\
C-2 & & & & \\
& a_1 + a_2 + a_3 = 14 & & \\
& a_3 = 1 & (a_1, a_2) = (4, 9), (5, 8), \ldots \ldots (9, 4) & \text{Total number} = 6 \\
& a_3 = 3 & (a_1, a_2) = (2, 9), (3, 8), \ldots \ldots (9, 2) & \text{Total number} = 8 \\
& a_3 = 5 & (a_1, a_2) = (1, 8), \ldots \ldots (8, 1), (9, 0) & \text{Total number} = 9 \\
& a_3 = 7 & (a_1, a_2) = (1, 6), \ldots \ldots (6, 1), (7, 0) & \text{Total number} = 7 \\
& a_3 = 9 & (a_1, a_2) = (1, 4), \ldots \ldots (4, 1), (5, 0) & \text{Total number} = 5 \\
\end{array}
\]
23. Let \(\theta \) be the angle between the vectors \(\vec{a} \) and \(\vec{b} \), where \(|\vec{a}| = 4 \), \(|\vec{b}| = 3 \) and \(\theta \in \left(\frac{\pi}{4}, \frac{\pi}{3} \right) \).

Then
\[
\left| (\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) \right|^2 + 4 \left| (\vec{a} - \vec{b}) \right|^2
\]

is equal to ________.

NTA Ans. (576)
Reso Ans. (576)

Sol.

Given \(|\vec{a}| = 4 \), \(|\vec{b}| = 3 \), \(\vec{a} \times \vec{b} \in \left(\frac{\pi}{4}, \frac{\pi}{3} \right) \)

\[
\begin{align*}
(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) & = 4(\vec{a} \cdot \vec{b})^2 \\
(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{b}) & = 4(\vec{a} \cdot \vec{b})^2 \\
4(\vec{a} \times \vec{b})^2 & = 4 |\vec{a}|^2 |\vec{b}|^2 \\
4 \times 16 \times 9 & = 64 \times 9 = 576
\end{align*}
\]

24. Let the abscissae of the two points P and Q be the roots of \(2x^2 - rx + p = 0 \) and the ordinates of P and Q be the roots of \(x^2 - sx - q = 0 \). If the equation of the circle described on PQ as diameter is \(2(x^2 + y^2) - 11x - 14y - 22 = 0 \), then \(2r + s - 2q + p \) is equal to ________.

NTA Ans. (7)
Reso Ans. (7)

Sol.

The number of values of \(x \) in the interval \(\left(\frac{\pi}{4}, \frac{7\pi}{4} \right) \) for which

\[
14 \csc^2 x - 2 \sin^2 x = 21 - 4 \cos^2 x
\]

holds, is ________.

NTA Ans. (4)
Reso Ans. (4)

26. For a natural number \(n \), let \(a_n = 19^n - 12^n \). Then, the value of \(\frac{31a_9 - a_{10}}{57a_8} \) is ________.

NTA Ans. (4)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x) = \left(2 \left(1 - \frac{3^{25}}{2} \right)(2 + x^{25})\right)^{\frac{3}{2}}$. If the function $g(x) = f(f(f(x))) + f(f(x))$, then the greatest integer less than or equal to $g(1)$ is ________.

\[g(1) = f(f(f(1))) + f(f(1)) \]
\[f(1) = \frac{1}{3} \]
\[f(f(1)) = f\left(\frac{1}{3}\right) = \frac{2}{\sqrt{3}} (2 + x^{25})^{1/2} \]
\[f(f(f(1))) = f\left(\frac{1}{3}\right) = \frac{2}{\sqrt{3}} \]
\[\Rightarrow [g(1)] = \left[\frac{2}{\sqrt{3}} + 1\right] = 2 \]

28. Let the lines $L_1 : \mathbf{r} = \lambda \left(\hat{i} + 2\hat{j} + 3\hat{k}\right)$, $\lambda \in \mathbb{R}$,

$L_2 : \mathbf{r} = \left(\hat{i} + 3\hat{j} + \hat{k}\right) + \mu \left(\hat{i} + \hat{j} + 5\hat{k}\right)$, $\mu \in \mathbb{R},$

intersect at the point S. If a plane $ax + by - z + d = 0$ passes through S and is parallel to both the lines L_1 and L_2, then the value of $a + b + d$ is equal to ________.

29. Let A be a 3×3 matrix having entries from the set $\{-1, 0, 1\}$. The number of all such matrices A having sum of all the entries equal to 5, is ________.
Largest digit in number = 9

Sum of three digit maximum can be = 27

Hence sum of digit can be = 7, 14, 21

Now \(a_1 + a_2 + a_3 = 7\), \(a_1 + a_2 + a_3 = 14\), \(a_1 + a_2 + a_3 = 21\)

C-1

\(a_3 = 1\) \((a_1, a_2) = (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\) Total number = 5

\(a_3 = 3\) \((a_1, a_2) = (1, 3), (2, 2), (3, 1)\) Total number = 3

\(a_3 = 5\) \((a_1, a_2) = (1, 1)\) Total number = 1

C-2

\(a_3 = 1\) \((a_1, a_2) = (4, 9), (5, 8)\)...... Total number = 6

\(a_3 = 3\) \((a_1, a_2) = (2, 9), (3, 8)\)...... Total number = 8

\(a_3 = 5\) \((a_1, a_2) = (1, 8)\)...... Total number = 8

\(a_3 = 7\) \((a_1, a_2) = (1, 6)\)...... Total number = 6

\(a_3 = 9\) \((a_1, a_2) = (1, 4)\)...... Total number = 4

C-3

\(a_3 = 1\) \((a_1, a_2) = (9, 9)\) Total number = 1

\(a_3 = 3\) \((a_1, a_2) = (7, 9), (8, 8), (9, 7)\) Total number = 3

\(a_3 = 7\) \((a_1, a_2) = (5, 9)\)...... Total number = 5

\(a_3 = 9\) \((a_1, a_2) = (3, 9)\)...... Total number = 7

Total = 57

The greatest integer less than or equal to the sum of first 100 terms of the sequence

\[\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots\]
is equal to \(\boxed{98}\).

NTA Ans. \((98)\)

Reso Ans. \((98)\)

Sol.

\[S = \left(1 - \frac{2}{3}\right) + \left(1 - \frac{4}{9}\right) + \left(1 - \frac{8}{27}\right) + \ldots + 100 \text{ terms}\]

\[S = 100 - \left(\frac{2}{3} \cdot \frac{2^2}{3} + \frac{2^3}{3} + \ldots + 100 \text{ term}\right)\]

\[S = 100 - \frac{2}{3} \left(1 - \frac{2^{100}}{9}\right)\]

\[S = 100 - \frac{2}{3} \left(1 - \frac{2^{100}}{3}\right)\]

\[S = 100 - 2 \left(1 - \frac{2^{100}}{3}\right)\]

\[S = 98 + 2 \left(\frac{2^{100}}{3}\right)\]

\[0 < 2 \times \left(\frac{2^{100}}{3}\right) < 1\]

\[|S| = 98\]
JEE (Main)
PAPER-1 (B.E./B. TECH.)

2022

COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 25 June, 2022 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: CHEMISTRY

Resonance Eduventures Ltd.
Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free: 1800 258 5555 | 7340010333 | facebook.com/ResonanceEdu | twitter.com/Resonanceedu | www.youtube.com/resswatch | blog.resonance.ac.in

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal
1. Bonding in which of the following diatomic molecule(s) become(s) stronger, on the basis of MO Theory, by removal of an electron?

(A) NO
(B) N₂
(C) O₂
(D) C₂
(E) B₂

Choose the most appropriate answer from the options given below:

A (A), (B), (C) only
B (B), (C), (E) only
C (A), (C) only
D (D) only

Answer: (C)

Solution:
Species B₂ NO N₂ O₂ C₂
Bond order 1 2.5 3 2 2
Species B₂⁺ NO⁺ N₂⁺ O₂⁺ C₂⁺
Bond order 0.5 3 2.5 2.5 1.5

2. Incorrect statement for Tyndall effect is:

A The refractive indices of the dispersed phase and the dispersion medium differ greatly in magnitude.
B The diameter of the dispersed particles is much smaller than the wavelength of the light used.
C During projection of movies in the cinemas hall, Tyndall effect is noticed.
D It is used to distinguish a true solution from a colloidal solution.

Answer: (B)

Solution:
According to NCERT text
The diameter of the dispersed particles is not much smaller than the wavelength of the light used.
The intensity of scattered light depends on the difference between the refractive indice of the D.P and D.M. In lyophobic colloids, this difference is appreciable and therefore the tyndal effect is quite well defined but in lyophilic sols the difference is very small and the tyndal effect is very weak.

So, to show Tyndall effect the refractive indices of the dispersed phase and dispersion medium differ greatly in magnitude.

3. The pair, in which ions are isoelectronic with Al³⁺ is:

- A: Br⁻ and Be²⁺
- B: Cl⁻ and Li⁺
- C: S²⁻ and K⁺
- D: O²⁻ and Mg²⁺

Ans: (D)

Sol.

<table>
<thead>
<tr>
<th>Species</th>
<th>Al<sup>3+</sup></th>
<th>Mg<sup>2+</sup></th>
<th>Be<sup>2+</sup></th>
<th>O<sup>2-</sup></th>
<th>Br<sup>-</sup></th>
<th>Li<sup>+</sup></th>
<th>S<sup>2-</sup></th>
<th>K<sup>+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of e<sup>-</sup></td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>

So Mg²⁺ & O²⁻ are isoelectronic with Al³⁺.

4. Leaching of gold with dilute aqueous solution of NaCN in presence of oxygen gives complex [A], which on reaction with zinc forms the elemental gold and another complex [B]. [A] and [B], respectively are:

- A: [Au(CN)₄]⁻ and [Zn(CN)₂(OH)₂]²⁻
- B: [Au(CN)₂]⁻ and [Zn(OH)₄]²⁻
- C: [Au(CN)₂]⁻ and [Zn(CN)₄]²⁻
- D: [Au(CN)₄]²⁻ and [Zn(CN)₆]⁴⁻

Ans: (C)

Sol.

4Au(s) + 8CN⁻ (aq) + 2H₂O(aq) + O₂(g) \[\rightarrow\] 4[Au(CN)₂]⁻ (aq) + 4OH⁻ (aq)

2[Au(CN)₂]⁻ (aq) + Zn(s) \[\rightarrow\] [Zn(CN)₄]²⁻ (aq) + 2 Au(s)

5. Number of electron deficient molecules among the following PH₃, B₂H₆, CCl₄, NH₃, LiH and BCl₃ is...
6 Which one of the following alkaline earth metal ions has the highest ionic mobility in its aqueous solution?

- A. Be$^{2+}$
- B. Mg$^{2+}$
- C. Ca$^{2+}$
- D. Sr$^{2+}$

Ans (D)

Sol. Smaller the size of ion greater is it's hydration & greater is it's hydrated radii & smaller is ionic mobility.

So order of ionic mobility : Be$^{2+}$ < Mg$^{2+}$ < Ca$^{2+}$ < Sr$^{2+}$ < Ba$^{2+}$

7 White precipitate of AgCl dissolves in aqueous ammonia solution due to formation of:

- A. [Ag(NH$_3$)$_4$]Cl$_2$
- B. [AgCl]$_2$(NH$_3$)$_2$
- C. [Ag(NH$_3$)$_2$]Cl
- D. [Ag(NH$_3$)Cl]$_2$

Ans (C)

Sol. AgCl + 2NH$_3$OH → [Ag(NH$_3$)$_2$]Cl + 2H$_2$O
8. Cerium (IV) has a noble gas configuration. Which of the following is correct statement about it?

A. It will not prefer to undergo redox reactions.
B. It will prefer to gain electron and act as an oxidizing agent
C. It will prefer to give away an electron and behave as a reducing agent.
D. It acts as both, oxidizing and reducing agent.

Ans. (B)

Sol. Formation of Ce(IV) is favoured by its noble gas configuration but it is strong oxidant reverting to the +3 state. The E° value for Ce⁴⁺/Ce³⁺ is \(E_{Ce^{4+}/Ce^{3+}}^0 = 1.74 \) V is favourable for its oxidising nature.

9. Among the following, which is the strongest oxidizing agent?

A. Mn³⁺
B. Fe³⁺
C. Ti³⁺
D. Cr³⁺

Ans. (A)

Sol. Oxidising agent gets reduced.
Due to much large third ionization energy of Mn (required for changing d⁵ to d⁴) is responsible for strong oxidising agent property of Mn³⁺
Most stable oxidation state of
Ti → +4 ; Cr → +3 ; Fe → +2 ; Mn → +2 (acidic medium), 4 (basic medium)

10. The eutrophication of water body results in:

A. loss of Biodiversity.
B. breakdown of organic matter.
C. increase in biodiversity.
D. decrease in BOD.

Ans. (A)
This process in which nutrient enriched water bodies support a dense plant population, which kills animal life by depriving it of oxygen and results in subsequent loss of biodiversity is known as Eutrophication.

11 Phenol on reaction with dilute nitric acid, gives two products. Which method will be most efficient for large scale separation?

A Chromatographic separation
B Fractional Crystallisation
C Steam distillation
D Sublimation

Ans (C)
Sol. [Chemical equations and diagrams]

Mixture of ortho & para nitro phenol is separated by steam distillation as ortho isomer is steam volatile.

12 In the following structures, which one is having staggered conformation with maximum dihedral angle?

A
B
C
D

Ans (C)
Sol. Anti-conformation of butane along C2–C3 bond has maximum dihedral angle i.e. 180°.
13. The product formed in the following reaction.

\[
\text{CH}_3\text{C}=\text{CH}_2 + \text{H}^- + \text{C}-\text{C}-\text{CH}_3 \xrightarrow{\text{H}^+} ? \text{ is:}
\]

A

\[
\text{CH}_3\text{C}=\text{CH}_2 \xrightarrow{\text{H}^+} \text{CH}_3\text{C}=\text{CH}_2
\]

B

\[
\text{CH}_3\text{C}=\text{CH}_2 \xrightarrow{\text{H}^+} \text{CH}_3\text{C}=\text{CH}_2 - \text{C}-\text{C}=\text{C} \text{ (from H)}
\]

C

\[
\text{CH}_3\text{C}=\text{CH}_2 \xrightarrow{\text{H}^+} \text{CH}_3\text{C}=\text{CH}_2 - \text{CH}_3
\]

D

\[
\text{CH}_3\text{C}=\text{CH}_2 \xrightarrow{\text{H}^+} \text{CH}_3\text{C}=\text{CH}_2 - \text{CH}_2\text{C}(\text{CH}_3)_2
\]

Ans. (B)

Sol.

\[
(\text{CH}_3)_2\text{C} = \text{CH}_2 \xrightarrow{\text{H}^+} (\text{CH}_3)_2\text{C}^+ + (\text{CH}_3)_2\text{C} = \text{CH}_2 \xrightarrow{\text{H}^+} (\text{CH}_3)_2\text{C} - \text{CH}_2 - \text{C}^+(\text{CH}_3)_2
\]

\[
\xrightarrow{\text{H}^+} (\text{CH}_3)_2\text{C} - \text{CH}_2 - \text{CH}(\text{CH}_3)_2
\]

14. The IUPAC name of ethyldiene chloride is:

A. 1-Chloroethene

B. 1-Chloroethyne

C. 1,2-Dichloroethane

D. 1,1-Dichloroethane

Ans. (D)

Sol.

\[
\text{CH}_3\text{CH}=\text{CHCl} \quad (1,1\text{-Dichloroethane})
\]
15. The major product in the reaction:

\[\text{CH}_3 - \text{C} = \text{Cl} + \text{K} - \text{O} - \text{C} - \text{CH}_3 \rightarrow ? \text{ is:} \]

A. t-Butyl ethyl ether
B. 2,2-Dimethyl butane
C. 2-Methyl pent-1-ene
D. 2-Methyl prop-1-ene

Ans. (D)

Sol.

\[\text{CH}_3 - \text{C} = \text{Cl} + \text{K} - \text{O} - \text{C} - \text{CH}_3 \]

\[\text{CH}_3 \text{CH}_3 \]

\[\text{CH}_3 \text{CH}_3 \]

\[\text{CH}_3 \text{CH}_2 \text{Cl} \]

\[\text{CH}_3 \text{CH}_2 \text{Cl} \]

\[\text{t-BuO}^{-} \text{ carry out Elimination reaction at } 3^{\circ} \text{ alkyl halide} \]

16. The intermediate \(X \) in the reaction:

\[\text{CHCl}_3 + \text{aq. NaOH} \rightarrow [X] \]

(1) \(\text{NaOH} \)
(2) \(\text{H}^{+} \)

is:

\[\text{CHO} \]
In the following reaction:

\[
\text{H}_3\text{C} - \text{C} - \text{C}l_2 + \text{H}_2\text{O} \rightarrow \text{A and B}
\]

The compounds A and B respectively are:
Cumene hydroperoxide undergoes rearrangement to give phenol and acetone.

The reaction of $\text{R} - \text{C} - \text{NH}_2$ with bromine and KOH gives RNH_2 as the end product. Which one of the following is the intermediate product formed in this reaction?

A. $\text{R} - \text{C} - \text{NH} - \text{Br}$
B. $\text{R} - \text{NH} - \text{Br}$
C. $\text{R} - \text{N} = \text{C} = \text{O}$
D. $\text{R} - \text{C} - \text{NBr}_2$

Ans (C)
19. Using very little soap while washing clothes, does not serve the purpose of cleaning of clothes, because:

A. soap particles remain floating in water as ions.
B. the hydrophobic part of soap is not able to take away grease.
C. the micelles are not formed due to concentration of soap, below its CMC value.
D. colloidal structure of soap in water is completely disturbed.

Ans. (C)

Sol. Micelle or associate colloid formation occurs above a certain conc. known as CMC.

20. Which one of the following is an example of artificial sweetener?

A. Bithional
B. Alitame
C. Salvarsan
D. Lactose

Ans. (B)

Sol. Alitame is an aspartic acid containing dipeptide artificial sweetener.

21. The number of N atoms in 581 g of $C_7H_5N_3O_6$ is $x \times 10^{21}$. The value of x is ________.

$(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$ (Nearest Integer)

Ans. (5418)

Sol. Moles of compound $(C_7H_5N_3O_6) = \frac{645}{215} = 3$ mol

moles of Nitrogen = 9 mole

$\text{No. of atoms of Nitrogen} = 9 \times 6.02 \times 10^{23}$

$= 54.18 \times 10^{23}$

$= 5418 \times 10^{21}$
22. The distance between Na\(^+\) and Cl\(^-\) ions in solid NaCl of density 43.1 g cm\(^{-3}\) is
\[\times 10^{-10} \text{ m. (Nearest Integer)} \]

(Given : \(N_A = 6.02 \times 10^{23} \text{ mol}^{-1}\))

Ans (1)

Sol. For NaCl \(Z = 4\) & \(M = 58.5\) gram

\[d = \frac{Z \times M}{N_A \times \text{Volume}} \]

\[a^3 = \frac{4 \times 58.5}{6 \times 43.1} \times 10^{-23} \]

\[= 0.9 \times 10^{-23} \]

\[= 9 \times 10^{-24} \]

\[a = 2.08 \times 10^{-8} \text{ cm} \]

\[d_{\text{Na}^+\text{Cl}^-} = a = \frac{2.08 \times 10^{-10}}{2} \text{ m} \]

Ans : 1

23. The longest wavelength of light that can be used for the ionisation of lithium atom (Li) in its ground state is \(x \times 10^{-8} \text{ m}. \) The value of \(x\) is _______ (Nearest Integer)

(Given : Energy of the electron in the first shell of the hydrogen atom is \(-2.2 \times 10^{-18} \text{ J}\); \(h = 6.63 \times 10^{-34} \text{ Js}\) and \(c = 3 \times 10^8 \text{ ms}^{-1}\))

Ans (4)

Sol. Electronic configuration of Li = 1s\(^2\) 2s\(^1\)

\[(E_u)_{n=2} = (E_r) \]

\[\frac{Z^2}{n^2} = -2.2 \times 10^{-18} \times \frac{9}{4} \]

\[E = \left(\frac{hc}{\lambda} \right) = 2.2 \times 10^{-18} \times \frac{9}{4} \]

\[= 2.2 \times 10^{-18} \times \frac{9}{4} = 2.2 \times 10^{-18} \times \frac{9}{4} \]

\[\lambda = 4 \times 10^{-8} \text{ m} \]
24

The standard entropy change for the reaction
\[4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_3\text{O}_4(s) \quad \Delta S_r = -550 \text{ J/K}\]

Given: The standard enthalpy change for the reaction is \(-165 \text{ kJ mol}^{-1}\). The temperature in K at which the reaction attains equilibrium is ________. (Nearest Integer)

\textbf{Ans} (300)

\textbf{Sol.}
\[4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_3\text{O}_4(s) \Delta S_r = -550 \text{ J/K}
\]

At equilibrium \(\Delta G = 0\)

\[T = \left(\frac{\Delta H}{\Delta S}\right)_{\text{at equilibrium}}\]

\[= \frac{-165 \times 10^3}{-550} = 300 \text{ K}\]

25

1 L aqueous solution of H\(_2\)SO\(_4\) contains 0.02 m mol H\(_2\)SO\(_4\). 50% of this solution is diluted with deionized water to give 1 L solution (A). In solution (A), 0.01 m mol of H\(_2\)SO\(_4\) are added. Total m mols of H\(_2\)SO\(_4\) in the final solution is ________ \(\times 10^3\) m mols.

\textbf{Ans} NTA answer is 15, but Reso answer is 20.

\textbf{Sol.}
Initial moles of H\(_2\)SO\(_4\) (in/Lit.) = 0.02

In 50% solution moles of H\(_2\)SO\(_4\) = 0.01

Added moles of H\(_2\)SO\(_4\) = 0.01

Total moles of H\(_2\)SO\(_4\) in resulting solution = 0.02

= 20 \times 10^{-3} \text{ moles}

= 20 \text{ milimoles}

\textbf{Ans 20}

26

The standard free energy change (\(\Delta G^\circ\)) for 50% dissociation of N\(_2\)O\(_4\) into NO\(_2\) at 27°C and 1 atm pressure is \(-x\) J mol\(^{-1}\). The value of \(x\) is ________. (Nearest Integer)

\[\text{Given: } R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}, \log 1.33 = 0.1239 \ln 10 = 2.3\]

\textbf{Ans} (710)

\textbf{Sol.}
N\(_2\)O\(_4\)(g) \rightleftharpoons 2\text{NO}_2(g)

\[1-\alpha \quad 2\alpha\]

\[k_p = \frac{4n^2p}{1-\alpha^2} = \frac{4 \times (0.5)^2 \times 1}{1-0.5^2} = \frac{1}{0.75} = \frac{4}{3}\]

\[k_p = \frac{4}{3}\]

\[\Delta G^\circ = -2.3 \text{ RT log } k_p\]

\[= -2.3 \times 8.31 \times 300 \times \log(1.33) = 710.4 \text{ J mol}^{-1} = 710 \text{ J mol}^{-1}\]
27. In a cell, the following reactions take place:

\[\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^- \quad E^0_{\text{Fe}^{3+}/\text{Fe}^{2+}} = 0.77 \text{ V} \]

\[2\text{I}^- \rightarrow \text{I}_2 + 2e^- \quad E^0_{\text{I}_2/\text{I}^-} = 0.54 \text{ V} \]

The standard electrode potential for the spontaneous reaction in the cell is \(x \times 10^{-2} \text{ V} \) 298 K.

The value of \(x \) is ______\. (Nearest Integer)

\(\text{Ans} \ (23) \)

\(\text{Sol.} \ E_{\text{Cell}}^0 = (E_{\text{RP}}^0)_{C} - (E_{\text{RP}}^0)_{A} \)

\[= 0.77 - 0.54 \]

\[= 0.23 \text{ V} \]

\[= 23 \times 10^{-2} \text{ V} \]

\[\text{Ans} 23 \]

28. For a given chemical reaction:

\[\gamma_1 \text{A} + \gamma_2 \text{B} \rightarrow \gamma_3 \text{C} + \gamma_4 \text{D} \]

Concentration of \(\text{C} \) changes from 10 mmol dm\(^{-3}\) to 20 mmol dm\(^{-3}\) in 10 seconds. Rate of appearance of \(\text{D} \) is 1.5 times the rate of disappearance of \(\text{B} \) which is twice the rate of disappearance of \(\text{A} \). The rate of appearance of \(\text{D} \) has been experimentally determined to be 9 mmol dm\(^{-3}\) s\(^{-1}\). Therefore the rate of reaction is ______ mmol dm\(^{-3}\) s\(^{-1}\). (Nearest Integer)

\(\text{Ans} \ (1) \)

\(\text{Sol.} \ \frac{d[c]}{dt} = \left(\frac{20 - 10}{10} \right) = 1 \text{ milimole/dm}^3 \text{ sec} \)

\[\gamma_1 \text{A} + \gamma_2 \text{B} \rightarrow \gamma_3 \text{C} + \gamma_4 \text{D} \]

\[\frac{d[D]}{dt} = 1.5 \left(- \frac{d}{dt} [\text{B}] \right) = 9 \text{ milimole/dm}^3 \text{ sec} \]

\[\left(- \frac{d}{dt} [\text{B}] \right) = 2 \left(- \frac{d}{dt} [\text{A}] \right) \]

\[\text{Rate} = - \frac{1}{\gamma_1} \frac{d[A]}{dt} = - \frac{1}{\gamma_2} \frac{d[B]}{dt} = \frac{1}{\gamma_3} \frac{d[C]}{dt} = \frac{1}{\gamma_4} \frac{d[D]}{dt} \]

\[(i) \frac{d[D]}{dt} = \frac{\gamma_4}{\gamma_2} \left(- \frac{d[B]}{dt} \right) = 1.5 \left(- \frac{d[B]}{dt} \right) \]
\[
\gamma_4 = 1.5 \\
\gamma_2 = 2 \\
\gamma_2 \left[-\frac{d[A]}{dt} \right] = \left(-\frac{d[B]}{dt} \right) = 2 \left(-\frac{d[A]}{dt} \right) \\
\gamma_4 \left[\frac{d[C]}{dt} \right] = \gamma_3 \left[\frac{d[D]}{dt} \right] \\
1 = \gamma_3 \times 9 \\
\gamma_4 \\
\gamma_3 \\
29 \text{ If } [\text{Cu(H}_2\text{O)}_4]^{2+} \text{ absorbs a light of wavelength } 600 \text{ nm for d-d transition, then the value of octahedral crystal field splitting energy for } [\text{Cu(H}_2\text{O)}_6]^{2+} \text{ will be } \gamma_2 \times 10^{-21} \text{ J. } \\
\text{[Nearest integer]} \\
\text{(Given: } h = 6.63 \times 10^{-34} \text{ Js and } c = 3.08 \times 10^8 \text{ ms}^{-1}) \\
\text{Ans (745)} \\
\text{Sol.} \\
\Delta_t = \frac{hc}{\lambda} = \left(\frac{6.63 \times 10^{-34} \times 3.08 \times 10^8}{600 \times 10^{-9}} \right) = 340.34 \times 10^{-21} \text{ J} \\
\Delta_n = \frac{9}{4} \Delta_t = \frac{9}{4} \times 340.34 \times 10^{-21} = 765.765 \times 10^{-21} \approx 766 \times 10^{-21} \text{ J} \\
30 \text{ Number of grams of bromine that will completely react with } 5.0 \text{ g of pent-1-ene is } \gamma_2 \times 10^{-2} \text{ g. } \text{ (Atomic mass of Br = 80 g/mol)} \text{ [Nearest integer]} \\
\text{Ans NTA Answer is 1136, Reso answer is 1142.} \\
\text{Sol.} \\
\text{Moles of Pent-1-ene = } \frac{5}{70} \\
\text{Moles of Br}_2 = \frac{5}{70} \\
\text{Weight of Br}_2 = \frac{5}{70} \times 160 \\
= 11.42 \\
= 1142 \times 10^{-2} \text{ g.}
JEE (Main)
PAPER-1 (B.E./B. TECH.)
2022

COMPUTER BASED TEST (CBT)
Questions & Solutions

Date: 25 June, 2022 (SHIFT-1) | TIME: (9.00 a.m. to 12.00 p.m)
Duration: 3 Hours | Max. Marks: 300

SUBJECT: PHYSICS

Resonance Eduventures Ltd.
Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free: 1800 258 5555

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal
1. If $Z = \frac{A^2 B^3}{C^4}$, then the relative error in Z will be:

\[
\Delta Z = \frac{\Delta A}{A} + \frac{\Delta B}{B} + \frac{\Delta C}{C}
\]

A \hspace{1cm} B \hspace{1cm} C

\[
\frac{2}{A} \Delta A + \frac{3}{B} \Delta B - \frac{4}{C} \Delta C
\]

\[
\frac{2}{A} \Delta A + \frac{3}{B} \Delta B + \frac{4}{C} \Delta C
\]

D

\[
\Delta A + \frac{\Delta B}{B} + \frac{\Delta C}{C}
\]

Ans. (C)

Sol. $Z = \frac{A^2 B^3}{C^4}$

\[
\ln(Z) = 2\ln A + 3\ln B - 4\ln C
\]

\[
\left(\frac{dZ}{Z}\right) = \frac{2}{A} \frac{\Delta A}{A} + \frac{3}{B} \frac{\Delta B}{B} - \frac{4}{C} \frac{\Delta C}{C}
\]

2. \vec{A} is a vector quantity such that $|\vec{A}|$ ≠ 0 - zero constant. Which of the following expression is true for \vec{A}?

A \hspace{1cm} B \hspace{1cm} C

\[
\vec{A} \cdot \vec{A} = 0
\]

\[
\vec{A} \times \vec{A} < 0
\]

\[
\vec{A} \times \vec{A} = 0
\]

\[
\vec{A} \times \vec{A} > 0
\]

Ans. (C)

Sol. $\vec{A} \times \vec{A} = |\vec{A}|\sin 0 = 0$
3. Which of the following relations is true for two unit vector \(\hat{A} \) and \(\hat{B} \) making an angle \(\theta \) to each other?

A. \[|\hat{A} + \hat{B}| = |\hat{A} - \hat{B}| \tan \frac{\theta}{2} \]

B. \[|\hat{A} - \hat{B}| = |\hat{A} + \hat{B}| \tan \frac{\theta}{2} \]

C. \[|\hat{A} + \hat{B}| = |\hat{A} - \hat{B}| \cos \frac{\theta}{2} \]

D. \[|\hat{A} - \hat{B}| = |\hat{A} + \hat{B}| \cos \frac{\theta}{2} \]

Ans. (B)
Sol. \[|\hat{A} + \hat{B}| = \sqrt{(1)^2 + (1)^2 + 2(1)(1)\cos \theta} = \sqrt{2(1 + \cos \theta)} \]
\[= \sqrt{2\left(2\cos \frac{\theta}{2}\right)^2} = 2\cos \frac{\theta}{2} \]
\[|\hat{A} - \hat{B}| = \sqrt{(1)^2 + (1)^2 - 2(1)(1)\cos \theta} = \sqrt{2(1 - \cos \theta)} \]
\[= \sqrt{2\left(2\sin \frac{\theta}{2}\right)^2} = 2\sin \frac{\theta}{2} \]
\[|\hat{A} - \hat{B}| = \frac{2\sin \frac{\theta}{2}}{2\cos \frac{\theta}{2}} = \tan \frac{\theta}{2} \]
\[= \frac{\tan \frac{\theta}{2}}{|\hat{A} + \hat{B}|} \]
4. If force \(\mathbf{F} = 3 \hat{i} + 4 \hat{j} - 2 \hat{k} \) acts on a particle having position vector \(2 \hat{i} + \hat{j} + 2 \hat{k} \) then, the torque about the origin will be:

\[\mathbf{A} \quad 3 \hat{i} + 4 \hat{j} - 2 \hat{k} \]
\[\mathbf{B} \quad -10 \hat{i} + 10 \hat{j} + 5 \hat{k} \]
\[\mathbf{C} \quad 10 \hat{i} + 5 \hat{j} - 10 \hat{k} \]
\[\mathbf{D} \quad 10 \hat{i} + \hat{j} - 5 \hat{k} \]

Ans. (B)

Sol.
\[\mathbf{\tau} = \mathbf{r} \times \mathbf{F} = (2 \hat{i} + \hat{j} + 2 \hat{k}) \times (3 \hat{i} + 4 \hat{j} - 2 \hat{k}) \]

\[\mathbf{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 0 \\ 2 & 4 & -2 \end{vmatrix} = (\hat{i})(-2-8) - (\hat{j})(-4-6) + (\hat{k})(8-3) \]

\[= -10 \hat{i} + 10 \hat{j} + 5 \hat{k} \]

5. The height of any point \(P \) above the surface of the earth is equal to diameter of the earth. The value of acceleration due to gravity at point \(P \) will be: (Given \(g = \) acceleration due to gravity at the surface of the earth).

\[\mathbf{A} \quad \frac{g}{2} \]
\[\mathbf{B} \quad \frac{g}{4} \]
\[\mathbf{C} \quad \frac{g}{3} \]
\[\mathbf{D} \quad \frac{g}{9} \]

Ans. (D)

Sol.
\[g_{\text{out}} = \frac{GM}{R^2} = \frac{GM}{(R+2r)^2} = \frac{1}{9} \frac{GM}{R^2} \]

\[g_{\text{out}} = \frac{g_s}{9} \]
6. The terminal velocity \((v_t) \) of the spherical raindrop depends on the radius \((r) \) of the spherical raindrop as:

\[
A \quad r^{1/2} \\
B \quad r \\
C \quad r^2 \\
D \quad r^3
\]

Ans. \((C) \)
Sol. \[v_t = \frac{2}{9} \frac{(\rho - \rho_i)gr^2}{4} \Rightarrow v_t \propto r^2 \]

7. The relation between root mean square speed \((v_{rms}) \) and most probable speed \((v_p) \) for the molar mass \(M \) of oxygen gas molecule at the temperature of 300 K will be:

\[
A \quad v_{rms} = \sqrt{\frac{2}{3}} v_p \\
B \quad v_{rms} = \sqrt{\frac{3}{2}} v_p \\
C \quad v_{rms} = v_p \\
D \quad v_{rms} = \sqrt{\frac{1}{3}} v_p
\]

Ans. \((B) \)
Sol. \[v_{rms} = \sqrt{\frac{3RT}{M}} \]
\[v_{mp} = \sqrt{\frac{2RT}{M}} \Rightarrow \frac{v_{rms}}{v_{mp}} = \sqrt{\frac{3}{2}} \]
8. In the figure, a very large plane sheet of positive charge is shown. \(P_1 \) and \(P_2 \) are two points at distance \(l \) and \(2l \) from the charge distribution. If \(\sigma \) is the surface charge density, then the magnitude of electric fields \(E_1 \) and \(E_2 \) at \(P_1 \) and \(P_2 \) respectively are:

\[E_1 = \frac{\sigma}{\varepsilon_0}, \quad E_2 = \frac{\sigma}{2\varepsilon_0} \]

\[E_1 = \frac{2\sigma}{\varepsilon_0}, \quad E_2 = \frac{\sigma}{\varepsilon_0} \]

\[E_1 = E_2 = \frac{\sigma}{2\varepsilon_0} \]

\[E_1 = E_2 = \frac{\sigma}{\varepsilon_0} \]

Ans. (C)

Sol. Electric field due to a large non-conducting sheet

\[E = \frac{\sigma}{2\varepsilon_0} \] and it is uniform width distance from the sheet.

9. Match List - I with List - II.

<table>
<thead>
<tr>
<th>List - I</th>
<th>List - II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) AC generator</td>
<td>(I) Detects the presence of current in the circuit</td>
</tr>
<tr>
<td>(B) Galvanometer</td>
<td>(II) Converts mechanical energy into electrical energy</td>
</tr>
<tr>
<td>(C) Transformer</td>
<td>(III) Works on the principle of resonance in AC circuit</td>
</tr>
<tr>
<td>(D) Metal detector</td>
<td>(IV) Changes an alternating voltage for smaller or greater value</td>
</tr>
</tbody>
</table>

Choose the correct answer from the options given below:

\[\text{A} \quad (A) - (II), (B) - (I), (C) - (IV), (D) - (III) \]

\[\text{B} \quad (A) - (II), (B) - (I), (C) - (III), (D) - (IV) \]

\[\text{C} \quad (A) - (III), (B) - (IV), (C) - (II), (D) - (I) \]

\[\text{D} \quad (A) - (III), (B) - (I), (C) - (II), (D) - (IV) \]
10. A long straight wire with a circular cross-section having radius \(R \), is carrying a steady current \(I \). The current \(I \) is uniformly distributed across this cross-section. Then the variation of magnetic field due to current \(I \) with distance \(r (r < R) \) from its centre will be:

- \(B \propto \frac{1}{r^2} \)
- \(B \propto \frac{1}{r} \)
- \(B \propto \frac{1}{r^2} \)
- \(B \propto \frac{1}{r} \)

Ans. (B)

Sol.

If the current passing through a wire is waltless then the phase difference between \(I \) and \(v \) should be \(\frac{\pi}{2} \), so the circuit should be either purely inductive or purely capacitive.
12. The electric field in an electromagnetic wave is given by $E = 56.5 \sin \omega(t-x/c)$ NC$^{-1}$. Find the intensity of the wave if it is propagating along x-axis in the free space.

$(\text{Given } \varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2})$

A. 5.65 Wm$^{-2}$
B. 4.24 Wm$^{-2}$
C. 1.9×10^{-7} Wm$^{-2}$
D. 56.5 Wm$^{-2}$

Ans. (B)

Sol. Average electrical energy density = \(\frac{1}{2} \varepsilon_0 E_{\text{rms}}^2 = \frac{1}{4} \varepsilon_0 E_0^2\)

Intensity \(\frac{dE}{Adx} = I\)

\(\varepsilon_0 E_0^2 = \frac{1}{2} \varepsilon_0 E_0^2 \) where \(\frac{dx}{dt} = C\)

\(C = \frac{1}{2 \varepsilon_0 E_0^2} \Rightarrow I = \left(\frac{1}{2 \varepsilon_0 E_0^2}\right) (C)\)

\(I = \frac{1}{2} (8.85 \times 10^{-12}) (56.5)^2 (3 \times 10^8) = 4.24 \times \text{W/m}^2\)

13. The two light beams having intensities I and 9I interfere to produce a fringe pattern on a screen. The phase difference between the beams is \(\pi/2\) at point P and \(\pi\) at point Q. Then the difference between the resultant intensities at P and Q will be:

A. 2I
B. 6I
C. 5I
D. 7I

Ans. (B)

Sol. \(I_P = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \frac{\pi}{2}\)

\(I_P = I_1 + I_2 = 10I\)

\(I_Q = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \pi\)

\(= 9I + I + 2 \times 3I(-1) = 4I\)

\(\frac{I_P}{I_Q} = \frac{10}{4} = \frac{5}{2}\)
14. A light wave travelling linearly in a medium of dielectric constant ε_r, incidents on the horizontal interface separating medium with air. The angle of incidence for which the total intensity of incident wave will be reflected back into the same medium will be:

(Given : relative permeability of medium $\mu_r = 1$)

- A 10°
- B 20°
- C 30°
- D 60°

Ans. (D)

Sol. $n = \sqrt{\mu_r \varepsilon_r}$

$n_{ree} = \frac{n_D}{n_r} = \frac{\sqrt{4 \times 1}}{\sqrt{1 \times 1}} = 2$

$\theta > c$

$\sin \theta > \text{sinc}$

$\sin \theta > \frac{1}{n_{ree}}$

$\sin \theta > 1/2$

$\theta > 30^\circ$

15. Given below are two statements:

Statement I : Davison-Germer experiment establishes the wave nature of electrons.

Statement II : If electrons have wave nature, they can interfere and show diffraction.

In the light of the above statements choose the correct answer from the option given below:

- A Both Statement I and Statement II are true.
- B Both Statement I and Statement II are false.
- C Statement I is true but Statement II is false.
- D Statement I is false but Statement II is true.

Ans. (A)

Sol. In Davison-Germer experiment, the high speed electrons are incident on Ni crystal and they get diffracted just like a wave. So wave nature of electron was experimentally observed in this experiment.
16. The ratio for the speed of the electron in the 3rd orbit of He\(^+\) to the speed of the electron in the 3rd orbit of hydrogen atom will be:

A. 1 : 1
B. 1 : 2
C. 4 : 1
D. 2 : 1

Ans. (D)

Sol. \[v = (2.19 \times 10^6 \text{ m/sec.}) \frac{Z}{n} \Rightarrow v \propto \frac{Z}{n}\]

\[v_1 \propto \frac{2}{3}, \quad v_2 \propto \frac{1}{3}\]

\[v_1 = \frac{2}{1}, \quad v_2 = \frac{1}{1}\]

17. The photodiode is used to detect the optical signals. These diodes are preferably operated in reverse biased mode because:

A. fractional change in majority carriers produce higher forward bias current
B. fractional change in majority carriers produce higher reverse bias current
C. fractional change in minority carriers produce higher forward bias current
D. fractional change in minority carriers produce higher reverse bias current

Ans. (D)

Sol. In photo–diode, the diode is connected in reverse bias, so initially the current will be very small. If light is incident on the diode, its photons produce more minority charge carriers, which are called photo generated charge carriers, due to which the reverse current increases.

In reverse bias, the current is already very small, so fractional charge in the current due to the light will be large.

18. A signal of 100 THz frequency can be transmitted with maximum efficiency by:

A. Coaxial cable
B. Optical fibre
C. Twisted pair of copper wires
D. Water

Ans. (B)

Sol. Such a large frequency signals (100THZ) can be transmitted by optical fibre.
19. The difference of speed of light in the two media A and B \((v_A - v_B) \) is \(2.6 \times 10^7 \) m/s. If the refractive index of medium B is 1.47, then the ratio of refractive index of medium B to medium A is: (Given: speed of light in vacuum \(c = 3 \times 10^8 \) ms\(^{-1}\))

\[
A \quad 1.303 \\
B \quad 1.318 \\
C \quad 1.13 \\
D \quad 0.12
\]

Ans. \(\text{(C)} \)

Sol. \(V_A = \frac{c}{n_A}, \quad V_B = \frac{c}{n_B} \)

\[
V_A - V_B = c \left(\frac{1}{n_A} - \frac{1}{n_B} \right) = 2.6 \times 10^7
\]

\[
(3 \times 10^8) \left(\frac{1}{1.47} - \frac{1}{n_B} \right) = 2.6 \times 10^7
\]

\[
n_B = 1.67 \Rightarrow \frac{n_B}{n_A} = \frac{1.67}{1.47} = 1.13
\]

20. A teacher in his physics laboratory allotted an experiment to determine the resistance (G) of a galvanometer. Students took the observations for \(\frac{1}{3} \) deflection in the galvanometer.

Which of the below is true for measuring value of G?

\[\begin{align*}
A & \quad \frac{1}{3} \text{ deflection method cannot be used for determining the resistance of the galvanometer.} \\
B & \quad \frac{1}{3} \text{ deflection method can be used and in this case the G equals to twice the value of shunt resistance(s).} \\
C & \quad \frac{1}{3} \text{ deflection method can be used and in this case, the G equals to three times the value of shunt resistance(s).} \\
D & \quad \frac{1}{3} \text{ deflection method can be used and in this case the G value equals to the shunt resistance(s).}
\end{align*} \]
21. A uniform chain of 6 m length is placed on a table such that a part of its length is hanging over the edge of the table. The system is at rest. The coefficient of static friction between the chain and the surface of the table is 0.5, the maximum length of the chain hanging from the table is __________ m.

Ans. 2

Sol.

To prevent sliding, the condition is:

\[
\frac{m}{6} x g \leq \frac{m}{6} (6 - x) g \mu_s
\]

where \(\mu_s \) is the coefficient of friction.

Solving for \(x \), we get:

\[
x \leq 2 \quad \Rightarrow \quad x_{\text{max}} = 2
\]
22. A 0.5 kg block moving at a speed of 12 ms\(^{-1}\) compresses a spring through a distance 30 cm when its speed is halved. The spring constant of the spring will be \(\boxed{600}\) Nm\(^{-1}\).

\[\text{Ans.} \quad 600 \]

\[\text{Sol.} \quad \frac{1}{2}mV^2 = \frac{1}{2}m \left(\frac{V^2}{4} \right) + \frac{1}{2}k(0.3)^2 \]

\[\frac{1}{2}m \cdot \frac{3}{4}V^2 = \frac{1}{2}k(0.9) \]

\[k = 600 \text{ N/m} \]

23. The velocity of upper layer of water in a river is 36 kmh\(^{-1}\). Shearing stress between horizontal layers of water is 10\(^{-3}\) Nm\(^{-2}\). Depth of the river is \(\boxed{100}\) m. (Co-efficient of viscosity of water is 10\(^{-2}\) Pa.s)

\[\text{Ans.} \quad 100 \]

\[\text{Sol.} \quad F_v = \eta A \frac{\Delta v}{\Delta y} \]

Shear stress = \(F_v / A = \eta \frac{\Delta v}{\Delta y}\)

\[10^{-3} = (10^{-2}) \frac{10 - 0}{h} \Rightarrow h = 100 \text{ m} \]

24. A steam engine intakes 50 g of steam at 100°C per minute and cools it down to 20°C. If latent heat of vaporization of steam is 540 cal g\(^{-1}\), then the heat rejected by the steam engine per minute is \(\boxed{31} \times 10^3\) cal.

(Given: specific heat capacity of water : 1 cal g\(^{-1}\) °C\(^{-1}\))

\[\text{Ans.} \quad 31 \]

\[\text{Sol.} \quad 50 \times 540 \text{ cal} + 50(1) (80) \text{ cal} \]

= 50(540 + 80)

= 50 \times 620 = 31000 \text{ cal}

= 31 kcal

= 31 \times 4.2

= 130.2 \times 10^3 \text{ J} \]

25. The first overtone frequency of an open organ pipe is equal to the fundamental frequency of a closed organ pipe. If the length of the closed organ pipe is 20 cm. The length of the open organ pipe is \(\boxed{80}\) cm.

\[\text{Ans.} \quad 80 \]
26. The equivalent capacitance between points A and B in below shown figure will be ________ μF.

\[\frac{2V}{2\ell_1} = \frac{V}{4\ell_2} \Rightarrow \ell_1 = 4\ell_2 = 4 \times 20 \]
\[\ell_1 = 80 \text{ cm} \]

Ans. 6

27. A resistor develops 300 J of thermal energy in 15 s, when a current of 2 A is passed through it. If the current increases to 3 A, the energy developed in 10 s is ________ J.

\[H = I^2 R t \]
\[H_1 = I_1^2 R_1 t_1 = (2^2 \times 10)(2) \times 15 \]
\[H_2 = (3^2 \times 10)(2) \times 10 \]
\[H_2 = 450 \text{ J} \]

Ans. 450

28. The total current supplied to the circuit as shown in figure by the 5 V battery is ________ A.

Ans. 2
29. The current in a coil of self inductance 2.0 H is increasing according to \(I = 2 \sin(t^2) \) A. The amount of energy spent during the period when current changes from 0 to 2 A is ________ J.

Ans. 4

Sol. \(\Delta E = \frac{1}{2} L \left(I_2^2 - I_1^2 \right) \)

\(\Delta E = \frac{1}{2} \left(2 \right) \left(2^2 - 0^2 \right) = 4J \)

30. A force on an object of mass 100 g is \(\left(10 \hat{i} + 5 \hat{j} \right) \) N. The position of that object at \(t = 2 \) s is \(\left(a \hat{i} + b \hat{j} \right) \) m after starting from rest. The value of \(\frac{a}{b} \) will be ________.

Ans. 2

Sol. \(\ddot{a} = \frac{f}{m} = 20\hat{i} + 10\hat{j} \) m/s

\(s = \frac{1}{2} \times 20 \times 2^2 \hat{i} + \frac{1}{2} \times 10 \times 2^2 \hat{j} \) m

\(a = \frac{2}{1} \)
Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

The 10-Building Blocks of Proven & Trusted Teaching Methodology @ Resonance

Success is Assured when you Do*

200 X Practice | 20 X Testing

1500+ Hrs. Classroom Teaching

10000+ Pages Study Material

45000+ Questions Practice Problems

50+ Tests | 200+ Hrs. Testing & Assessment

The figures (approx.) shown in the graph are of 2 Years Classroom Program (XMAAD- XI & XII) for JEE (Advanced) & Resonance in Academic Session 2021-22.

The figures vary for JEE (Main) NEET (UG) and Other Courses.

SCHOLARSHIP UPTO

100%

Admission Announcement: 2022-23

3rd & 10th July

ResoNET

3rd & 10th July

Spark

from 4th July 2022

Polish your subject knowledge to Shine in JEE (Advanced) 2022 with the guidance of HODs & Top notch Sr. Faculty of Resonance

Target: JEE (Advanced) | JEE (Main) | NEET (UG)
Pre-Foundation (V to X) | Board

Resonance Eduventures Ltd.
Kota Study Centre & Registered Corporate Office:
C-6, Tower, A-46 & 52, IPM, Near City Mall,
Jhalawar Road, Kota (Raj.) - 324005

Tel No.: 0744-277777, 2777700
Toll Free: 1800 250 5555 | GIN: U91302RJ2007PLC024029
E-mail: contact@resonance.ac.in | Visit: www.resonance.ac.in