1. If velocity of a bullet becomes 1/3rd of its initial velocity on penetrating 4 cm in a wooden block. How much will it penetrate more before coming to rest? (Assume retardation is constant)

 (1) 1/2 cm
 (2) 2 cm
 (3) 3 cm
 (4) 4 cm

 Ans.
 (1)

 Sol. Let initial velocity of body at point A is v, AB is 4 cm.
From $v^2 = u^2 - 2as$
$(v/3)^2 = v^2 - 2a \times 4$
$a = v/9$

Let on penetrating 4 cm in a wooden block, the body moves x distance form B to C.
So, for B to C
$u = v/3, v = 0$
$x = x; a = v/9$ (deceleration)

\[x = \frac{1}{2} \]

2. On increasing temperature, drift velocity of electrons in a conductor:
(1) Increases
(2) Decrease
(3) Remains same
(4) First increases then decreases

Ans. (2)

Sol. $v_0 = \frac{eE}{m}$

On increasing temperature, t decreases hence v_0 also decreases.

3. A projectile is fired from the surface of earth of radius R with a speed λv_e in radially outward direction (where v_e is the escape velocity and $\lambda < 1$). Neglecting air resistance, the maximum height from centre of earth is

(1) $\frac{R}{\lambda^2 + 1}$
(2) λR
(3) $\frac{R}{1 - \lambda^2}$
(4) λR

Ans. (3)
5. A high frequency carrier wave $C(t) = 5\sin(\theta t)$ is modulated by massage signal $m(t)$ shown in figure. Find modulation index of modulated signal:

![Modulation Index Diagram]

Ans. (3)

Sol.

$A_C = 5$

$A_m = 1$

$\mu = \frac{A_m}{A_C} = \frac{1}{5} = 0.2$

6. A soap bubble of radius 3 cm enclosed by another soap bubble of radius 6 cm. Pressure inside the enclosed bubble is equivalent to the pressure inside another bubble of radius equivalent to:

Ans. (1)

Sol.

$\Delta P = P_1 + P_2$

$\frac{4T}{R} = \frac{4T}{r_1 + \frac{4T}{r_2}}$

$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2}$

$= \frac{1}{3} + \frac{1}{6}$
7. A block is sliding down on a rough inclined plane with constant velocity. The force exerted by the surface on the block is:

\(mg \)
\(mg \cos \theta \)
\(\sqrt{mg \cos \theta + mgsin \theta} \)
\(mg(1 + \mu^2) \)

Ans: (1)

Sol. Block is moving with constant velocity so acceleration of the block is zero.

So, net force on the block is zero

\[F_{net} = mg - mg(1 + \mu^2) \]

8. A block is projected with speed \(u \) on a given inclined plane as shown. It just reaches to the top of inclined plane. The time taken by the block to reach from A to B is \(t(\sqrt{2} + 1) \) sec. Find the value of \(t \).

Ans: (1)

Sol.

In upward motion

\[\frac{1}{2} g \sin 45 \, x^2 = 10 \sqrt{2} \]
\[\frac{1}{2} \, \frac{10}{\sin 45} \, t^2 = 10 \sqrt{2} \]
\[t = 2 \]

In downward motion

\[\frac{1}{2} \, g \sin 30 \, t^2 = 10 \]
\[\frac{1}{2} \, \frac{10}{\sin 30} \, t^2 = 10 \]
\[t = 2 \sqrt{2} \]

Total time = \(2(1 + \sqrt{2}) \)
9. For the given two rods, radius of cross-section of each one is 1.4 mm, if net elongation is 1.4 mm, then find load:

\[
\begin{align*}
\frac{\Delta l}{l} & = \frac{F}{AE} \\
\frac{\Delta l_1 + \Delta l_2}{\Delta l} & = \frac{F_{1} + F_{2}}{AE_{1} + AE_{2}} \\
F & = \frac{\Delta l}{AE} = \frac{1.4 \times 10^{-9}}{1.53 \times 10^{2}} = \frac{1.4 \times 10^{-9} \times 10^{10}}{(1.8 + 4)} = 153 N
\end{align*}
\]

Ans. (4)

10. Two wave of intensity I_1 & I_2 such that \(\frac{I_1}{I_2} = \frac{1}{4} \) produce interference. If relation between I_max and I_min is given by \(\frac{I_{\text{max}} + I_{\text{min}}}{I_{\text{min}} - I_{\text{max}}} = \frac{2\alpha + 1}{\beta + 3} \), then value \(\frac{\alpha}{\beta} \) is:

\[
\begin{align*}
(1) & \ 2 \\
(2) & \ 4 \\
(3) & \ 3 \\
(4) & \ 1
\end{align*}
\]

Ans. (1)

\[
I_{\text{max}} = (\sqrt{I_1} + \sqrt{I_2})^2 = (1 + 2)^2 = 9 \\
I_{\text{min}} = (\sqrt{I_1} - \sqrt{I_2})^2 = (1 - 2)^2 = 1
\]

10. \(\frac{2\alpha + 1}{\beta + 3} \\
\frac{8 + 15}{8\alpha + 4} \\
\frac{2(2) + 1}{\beta + 3} \\
\frac{\alpha}{\beta} = 2 \\
\frac{\alpha}{\beta} = 1 \\
\frac{\alpha}{\beta} = 2
\]

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 322005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39187222
To Know more: vrs RESO at 55677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U803282007PLC024029
Toll Free: 1800 250 5555 | 9245000100000 | 9245000100001
This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal PAGE # 5

11. The energy density of EMW is given by \(u = \frac{\alpha x^{2}}{kT} \), where \(k \) = Boltzman constant, \(T \) = temperature, \(x \) = displacement, then dimensional formula of \(\alpha \) is:

\[
\begin{align*}
(1) & \ [M^{-1} L^0 T^{-1}] \\
(2) & \ [M^0 L^2 T^0] \\
(3) & \ [M^0 L^2 T^{-1}] \\
(4) & \ [M^2 L^{-3} T^{-1}]
\end{align*}
\]

Ans. (2)

\[
\alpha = \frac{kT}{x}
\]
12. Two heat engines are operating between 100 K to 300 K as shown. If efficiencies of these, are \(\eta_1 \) and \(\eta_2 \), then correct relation between them is:

(1) \(\eta_1 > \eta_2 \)
(2) \(\eta_1 < \eta_2 \)
(3) \(\eta_1 = \eta_2 \)
(4) \(\eta_1 = \frac{1}{2} \eta_2 \)

Ans. (1)

Sol.

\[\eta_1 = 1 - \frac{200}{300} = \frac{1}{3} = 0.33 \]

\[\eta_2 = 1 - \frac{100}{200} = \frac{1}{2} = 0.5 \]

\(\eta_2 = 2 \eta_1 \)

13. A particle is projected with speed \(u \) at angle 45° with horizontal. Time of flight is \(T \) and particle passes through point \((20,10)\).

(1) \(100\sqrt{2} i + 10\sqrt{2}(\sqrt{2} - 1)j \)
(2) \(100\sqrt{2} i - 10\sqrt{2}(\sqrt{2} - 1)j \)
(3) \(100\sqrt{2} i + 10\sqrt{2}(\sqrt{2} + 1)j \)
(4) \(100\sqrt{2} i - 10\sqrt{2}(\sqrt{2} + 1)j \)

Ans. (2)

Sol.

\[y = x \tan \theta - \frac{1}{2} \frac{g x^2}{u^2 \cos^2 \theta} \]

\[\Rightarrow 10 = 20 \tan 45° - \frac{1 \times 10 \times 20^2}{2 \times (\cos 45°)^2} \]

\[\Rightarrow u = 20 \]

Time of flight \(T = \frac{2u \sin \theta}{g} = \frac{2 \times 20 \times \sin 45°}{10} = 2\sqrt{2} \) sec

Momentum at \(t = \frac{T}{\sqrt{2}} = 2 \) sec is
14.

\[P = m \left(u \cos \theta + (u \sin \theta - gt) \right) \]
\[= 10 \left(20 \cos 45^\circ + (20 \sin 45^\circ - 10 \times 2) \right) \]
\[= 10 \sqrt{2} \left(1 - 10 \sqrt{2} \right) \]

If angular frequency of source is 60% less than the resonant frequency, then find peak value of current in AC circuit.

(1) 100 mA
(2) 238 mA
(3) 438 mA
(4) 800 mA

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IP Extension, Near City Mall, Jahangirpuri, Delhi (Delhi) - 110055
Ph. No. : +91-22-39167222 | Fax No. : +91-22-39167222 | E-mail : info@resonance.ac.in | CIN : U80300PB1998PLC00927

To know more : www.resonance.ac.in | Toll Free : 1800 258 5555 | 7840010333

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal

Sol. \(\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.01 \times 10^{-6}}} = 10^4 \)

\(\omega = 0.4 \times 10^4 = 4000 \)

\(X_L = \omega L = 0.01 \times 4000 = 40 \)

\(X_C = \frac{1}{\omega C} = \frac{1}{10^4 \times 4000} = 250 \)

\(t = \sqrt{X_L - X_C} = \sqrt{250 - 40} \]

\(i_{max} = \frac{V_{max}}{Z} = \frac{50}{210} \text{ A} \)

\(= \frac{50 \times 1000 \text{ mA}}{210} = 238 \text{ mA} \)

15. 4 Coulomb charge split into two part \(x \) and \(4 - x \) and placed at some distance \(d \). What will be the value of \(x \) So that force between them is maximum

(1) 1
(2) 2
(3) 3
(4) 4

Ans. (2)

16. A proton moves in a circle of radius 60 cm is uniform field \(B = 1 \text{T} \) in a plane perpendicular to magnetic field. Given \(m_p = 1.6 \times 10^{-27} \text{kg} \). Find its energy in MeV.

(1) 18 MeV
(2) 18 MeV
(3) 14 MeV
(4) 10 MeV

Ans. (1)

Sol. \(r = \frac{mv}{Bq} \)
\[\Rightarrow K = \frac{B^2 q^2 r^2}{2m} \]

\[= \frac{(1.6 \times 10^{-27})^2 \times (60 \text{ cm})^2}{2 \times 1.6 \times 10^{-27} \times 1.6 \times 10^{-27} \text{ eV}} = 18 \text{ MeV} \]

17. If net deviation of ray from the given system of prism is \(\frac{1}{x^2} \) then find value of \(x \).
Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-45 & 52, IPHA, Near City Mall, Bhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777799 | FAX No.: +91-22-39167222
To Know more: srs RESE at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U8030291200PLC024029
Toll Free: 1800 256 5555 | 7840010833 | facebook.com/resonancenews | twitter.com/resonancenews | www.youtube.com/resonance | www.resonance.ac.in

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal PAGE # 8

\[
\eta_t = 1.5 \\
\phi = 5^\circ \\
(1) 3 \\
(2) 5 \\
(3) 4 \\
(4) 2 \\
\text{Ans. (3)}
\]

\[\begin{align*}
\text{Resonance Eduventures Ltd.} \\
\text{JEE MAIN-2022 | DATE: 27-07-2022 (SHIFT-3) | PAPER-1 | MEMORY BASE9 | PHYSICS} \\
\text{Sol.} \\
\theta_{xett} &= \theta_1 - \theta_2 \\
\theta_{xett} &= (1.5 - 1)\text{°} - (1.55 - 1)\text{°} \\
&= 3^\circ - (0.55)5^\circ \\
&= 3^\circ - 2.75^\circ \\
&= 0.25^\circ \\
\frac{1}{x} &= \frac{1}{0.25} = 4 \\
\text{Ans. 4}
\end{align*}\]

\[\begin{align*}
\text{18.} \\
\text{As shown in meter bridge AC is the balancing length = 40 cm. If the radius of AB wire is doubled then the new balancing length is} \\
(1) \text{10 cm } \quad (2) \text{20 cm } \quad (3) \text{30 cm } \quad (4) \text{40 cm} \\
\text{Sol.} \\
\text{By volume conservation} \\
A_1 &= \text{constant} \\
\frac{c_2}{c_1} &= \frac{A_1}{A_2} \\
\frac{c_2}{c_1} &= A \\
\frac{c_2}{c_1} &= A/4 \\
c_2 &= \frac{c_1}{4} = 26 \text{ cm} \\
\text{Let new length is} x \\
\text{then} \\
\frac{R_1}{R_2} &= \frac{x}{25 - x} \\
4 &= \frac{x}{25 - x} \\
6 &= 25 - x \\
3x &= 50 - 2x \\
x &= 10 \text{ cm}
\end{align*}\]
19. Activity of a radio active sample is 64×10^{-4} dps and half life is 5 days. After how many days its activity becomes 5×10^{-4} dps.

(1) 30 days
(2) 25 days
(3) 35 days
(4) 40 days

Ans. (3)

Sol. $A = A_0 \times 2^n$

$2^n = \frac{A_0}{A} = \frac{64 \times 10^{-4}}{5 \times 10^{-5}} = 128 = 2^7$

$n = 7$

1 half life

$7 \times 5 = 35$ days

20. Choose correct option for EMW

(A) Electric & magnetic field are perpendicular to propagation of wave

(B) Electric & magnetic field are parallel to propagation of wave

(C) Energy is equally divided in electric and magnetic field

(D) Energy divided in electric and magnitude field is different

(1) A & B
(2) A & C
(3) B & C
(4) C & D

Ans. (2)

21. Drift velocity is independent of potential difference.

(B) Drift velocity decreases as temperature increase

(C) Drift velocity is inversely proportional to area assuming current constant

(D) Drift velocity in proportional to current.

Which of the following option is correct for conductors

(1) A and C
(2) B and C
(3) A and B
(4) C and D

Ans. (2)

22. In common-emitter configuration of transistor, base current is increased from 20 to 25 μA and collector current is increased from 450 mA to 452 mA, then current gain ($β$) is:

(1) 200
(2) 400
(3) 300
(4) 100

Ans. (2)

Sol. $β = \frac{ΔI_C}{ΔI_B} = \frac{2mA}{5μA} = 400$

Ans.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPA, Near City Mall, Indirapuram, Ghaziabad, Uttar Pradesh, India 201010

Ph. No.: +91-740-2777777, 2777700 | FAX No.: +91-740-2777722

To know more: ens RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | PIN: U20207J007PLC02029

Toll Free: 1800 238 5555 73400010333 73400010333 www.resonance.ac.in www.resonance.ac.in www.resonance.ac.in www.resonance.ac.in

This solution was downloaded from Resonance JEE (MAIN) 2022 Solution portal PAGE # 10

23. If voltage across the capacitor with dielectric ($K = 5$) is 20 V. Find energy stored in it (given $ε_0 = 9 \times 10^{-12}$ C²N·m⁻³)

![Diagram of the capacitor with dimensions]
Ans. (1)

Sol. \[U = \frac{\hbar}{2} \left(\frac{kA_1}{d} + \frac{5pA_2}{d} \right) V^2 \]

\[= \frac{1.996}{2} (KA_1 + A_2) V^2 \]

\[= \frac{9 \times 10^{-12}}{2 \times 10^{-3}} \left(5 \times \frac{1}{100} + \frac{7 \times 4}{100 \times 100} \right) \times 20^2 \]

\[= \frac{9 \times 10^{-12}}{2 \times 10^{-3}} \times 20 \times 20 = \frac{432 \times 10^{-12}}{100} = 4.32 \times 10^{-10} \]

24. In photoelectric effect

(A) Square of maximum velocity of ejected photo electron is inversely proportional to frequency of incident light
(B) Square of maximum velocity of ejected photo electron is linearly dependent on frequency of incident light
(C) Saturation current increase when distance between LED and photoelectric plate increased
(D) If power of LED is increased number of emitted photoelectron increase
(E) Instantaneous emission of photoelectron can be explained by wave theory

Which of the following option is correct:

(1) A & B
(2) B & E
(3) B & D
(4) A & D

Ans. (3)

Sol.
ADMISSIONS OPEN: 2022-23
— For Class XII Passed Students —

TARGET
JEE (Main+Advanced) 2023
COURSE
VIJAY (JR)
CLASS STARTS
1st & 16th Aug

TARGET
JEE (Main) 2023
COURSE
AJAY (ER)
CLASS STARTS
1st, 16th & 29th Aug

Scholarship upto 100%
on the basis of JEE (Main) Percentile Score

अपनी स्कॉलरशिप जानने के लिए अपनी जोई विद्यालय वाला अंक कर्म: 73400-10345

Resonance Eduventures Ltd.
Kota Study Centre & Registered Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No.: 0744-2777777, 2777700 | CIN: U80302RJ2007PLC02429 | www.resonance.ac.in | contact@resonance.ac.in