नुपात गों का धारा 1 ESS. - Two conductors A and B of the same material have their lengths in the ratio 1:2 and radii in the ratio 2:3. If they are connected in parallel across a battery, the ratio $\frac{\nu_A}{\nu_B}$ of the drift velocities of electrons in them will be - - (A) (C) - (D) 8/9 - A 1 cm segment of a wire lying along x-axis carries current of 0.5 A along +x direction. A magnetic field B = (0.4 mT) j + (0.6 mT) k is switched on, in the region. The force acting on the segment is - (A) $(2\hat{j} + 3\hat{k}) \text{ mN}$ - (C) $(6\hat{j} + 4\hat{k}) \text{ mN}$ - (B) $(-3)^2 + 2k^2 \mu N$ (D) $(-4)^2 + 6k^2 \mu N$ - The ratio of the number of turns of the primary to the secondary coils in an ideal transformer is 20: 1. If 240 V ac is applied from a source to the primary coil of transformer and a 6.0 Ω resistor is connected across the output terminals, then current drawn by the transformer from the source will be - - (A) 4.0 A (B) 3.8 A (C) 0.97 A (D) 0.10 A संबद्ध तरंगदेख 1 लयॉन के वक रे को कारण े) और (D) ही व्याख्या है। की सही 1-प्रकार के कर सकते -प्रकार के नेक्टॉन की Let $\lambda_e,\,\lambda_p$ and λ_d be the wavelengths associated with an electron, a proton and a deuteron, all moving with the same speed. Then the correct relation (A) $$\lambda_d > \lambda_p > \lambda_e$$ (C) $\lambda_p > \lambda_e > \lambda_d$ (B) $$\lambda_n > \lambda_n > \lambda_n$$ (B) $$\lambda_e > \lambda_p > \lambda_d$$ (D) $\lambda_e = \lambda_p = \lambda_d$ Which of the following figures correctly represent the shape of curve of binding energy per nucleon as a function of mass number? Note: Question numbers 13 to 16 are Assertion (A) and Reason (R) type questions. Two statements are given - one labelled Assertion (A) and the other abelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below. - (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). - Both Assertion (A) and Reason (R) are true, but Reason (R) is not the (B) correct explanation of Assertion (A). - Assertion (A) is true, but Reason (R) is false. - Assertion (A) is false and Reason (R) is also false. - 13. Assertion (A) : We cannot form a p-n junction diode by taking a slab of a p-type semiconductor and physically joining it to another slab of a n-type semiconductor. - : In a p-type semiconductor $\eta_{\rm e} >> \eta_{\rm h}$ while in a n-type Reason (R) semiconductor $\eta_h >> \eta_e$. - 4. Assertion (A): The potential energy of an electron revolving in any stationary orbit in a hydrogen atom is positive. - : The total energy of a charged particle is always Reason (R) positive. 55/1/3 Page 9 of 24 1 1 1 1 | होता है, तो उद्धे | 225 | | |--|---|-----| | त धारा की दिका 1 | 15. Assertion (A): It is difficult to move a magnet into a coil of large | * | | ा नात क्या प्रदेशा । | Reason (R) : The direction of the circuit of the coil is closed. | | | | and obtained of individual consequent and a continued in | L | | ी होता है । | Opposes the motion of a magnet, is such that it | | | नलंबित होती है। | 16. Assertion (A) : The deflection in a galvanometer is directly | | | | The policy of the current position through it | 1 | | है। बाद में यह | Reason (R) : The coil of a galvanometer is suspended in a uniform radial magnetic field. | | | ाँ पर विभवान्तर | CECTION - | | | | 17. If identical cells, each of o m f D _ 1 | | | कया गया है। | in reverse polarities. Calculate the potential difference account that two cells X and Y are connected | 0 | | कीजिए। | and a difficulty experiment the allegation of the same | 2 | | 2 | | | | उस बिन्दु पर | OP | 2 | | | (b) In a Young's double-slit experiment, two light waves, each of | | | | intensity I_0 , interfere at a point, having a path difference $\frac{\lambda}{8}$ on the | | | ने पर इस लेंस | screen. Find the intensity at this point. | | | 2 | 19. A double convex lens of glass has both force of the same and the same | | | पर संक्रमण | The raid its local length if it is immerced in water The | | | ाँन की कक्षा | refractive indices of glass and water are 1.5 and 1.33 respectively. 20. An electron in Bohr model of hydrogen atom makes a transition from | 2 | | 2 | energy level -1.51 ev to -3.40 ev. Calculate the change in the radius of ite | | | कॉन परमाणु | orbit. The radius of orbit of electron in its ground state is 0.53 A. | 2 | | ख्या घनत्व | 21. A p-type Si semiconductor is made by doping an average of one dopant | | | नेर्मित होलों | atom per 5×10^7 silicon atoms. If the number density of silicon atoms in the specimen is 5×10^{28} atoms m ⁻³ , find the number of holes created per | | | 2 | cubic centimetre in the specimen due to doping. Also give one example of | | | | such dopants. | 2 | | हैं, पार्श्व में | SECTION - C | | | 3 | 22. (a) Two batteries of emfs 3V & 6V and internal resistances $0.2~\Omega$ & $0.4~\Omega$ are connected in parallel. This combination is connected to a 4 Ω | | | | resistor. Find : | 3 | | | (i) the equivalent emf of the combination | | | - 1000 | (ii) the equivalent internal resistance of the combination (iii) the current drawn from the combination | | | 1000 | OR | | | 1 | ■ 55/1/3 Page 11 of 24 P.T | .0. | | The second secon | | | संयोजित है । सेल से ते 2! किया गया है। ग के प्रारम्भिक और के बीच संबंध ज्ञात ओर होता है, तब में गतिमान हैं ? ही है, से दूरी 'त' ान विद्युत क्षेत्र हैं क सदिशों ी, है जर आरेख व कलान्तर शांडए कि पर समान ह पड्डिका 3 3 A conductor of length I is connected across an ideal cell of emf E. Keeping the cell connected, the length of the conductor is increased to 2l by gradually stretching it. If R and R' are initial and final values of resistance and v_d and v_d are initial and final values of drift velocity, find the relation between (i) R' and R and (ii) vd and vd. When electrons drift in a conductor from lower to higher potential, does it mean that all the 'free electrons' of the conductor are moving in the same direction? A particle of charge q is moving with a velocity v at a distance 'd' from a long straight wire carrying a current T as shown in figure. At this instant, it is subjected to a uniform electric field E such that the particle keeps moving undeviated. In terms of unit vectors î, ĵ and k, find- - the magnetic field B, - the magnetic force \vec{F}_m , and - the electric field \vec{E} , acting on the charge. - 24. An ac source of voltage $v = v_m$ sin ωt is connected to a series combination of LCR circuit. Draw the phasor diagram. Using it obtain an expression for the impedance of the circuit and the phase difference between applied voltage and the current. A parallel plate capacitor is charged by an ac source. Show that the sum of conduction current (Ic) and the displacement current (Id) has the same value at all points of the circuit. (b) In case (a) above, is Kirchhoff's first rule (junction rule) valid at each plate of the capacitor? Explain. 55/1/3 Page 13 of 24 P.T.O. 3 ओं का उल्लेख की विष् के अंतक बोल्टता और 10-15 Vs 克 1 张南 एथ व्यवस्था खींचिए। व कीजिए। ए। बंधन ऊर्जा प्रति 3553 u है। इसके तथा नीचे दिए गए म से कम एक पृष्ठ सूत्र का अनुप्रयोग र सूत्र तथा उसके ाम फोकस बिन्दु" दूसरी ओर होता 4×1= Mention any three features of results of experiment on photoelectric effect which cannot be explained using the wave theory of light. In his experiment on photoelectric effect, Robert A. Millikan found the slope of the cut-off voltage versus frequency of incident light plot to be 4.12×10^{-15} Vs. Calculate the value of Planck's constant Draw circuit arrangement for studying V-I characteristics of a p-n 27. (8) (b) Show the shape of the characteristics of a diode. (c) Mention two information that you can get from these characteristics. Define 'Mass defect' and 'Binding energy' of a nucleus. Describe 28. (a) 'Fission process' on the basis of binding energy per nucleon. (b) A deuteron contains a proton and a neutron and has a mass of 2.013553 u. Calculate the mass defect for it in u and its energy equivalence in MeV. (m $_{\rm p}$ = 1.007277 u, m $_{\rm n}$ = 1.008665 u, 1u = 931.5 ## SECTION - D Question numbers 29 and 30 are case study based questions. Read the following paragraphs and answer the questions that follow. 29. A thin lens is a transparent optical medium bounded by two surfaces, at least one of which should be spherical. Applying the formula for image formation by a single spherical surface successively at the two surfaces of a lens, one can obtain the 'lens maker formula' and then the 'lens formula'. A lens has two foci - called 'first focal point' and 'second focal point' of the lens, one on each side. $4 \times 1 = 4$ 55/1/3 Page 15 of 24 P.T.O. गली मोटी । जब इस हाटा गया ो दरी पर लेंस के Consider the arrangement shown in figure. A black vertical arrow and a horizontal thick line with a ball are painted on a glass plate. It serves as the object. When the plate is illuminated, its real image is formed on the screen. Which of the following correctly represents the image formed on the screen? - (ii) Which of the following statements is incorrect? - (A) For a convex mirror magnification is always negative. - (B) For all virtual images formed by a mirror magnification is positive. - (C) For a concave lens magnification is always positive. - (D) For real and inverted images, magnification is always negative. - (iii) A convex lens of focal length 'f' is cut into two equal parts perpendicular to the principal axis. The focal length of each part will be: - (A) f (B) 2 f (C) $\frac{f}{2}$ (D) $\frac{f}{4}$ OR - (iii) If an object in case (i) above is 20 cm from the lens and the screen is 50 cm away from the object, the focal length of the lens used is - (A) 10 cm (B) 12 cm (C) 16 cm - (D) 20 cm - (iv) The distance of an object from first focal point of a biconvex lens is X₁ and distance of the image from second focal point is X₂. The focal length of the lens is - (A) X₁ X₂ - (B) $\sqrt{X_1 + X_2}$ - (C) $\sqrt{X_1 X_2}$ - (D) $\sqrt{\frac{\overline{X_2}}{X_1}}$ 55/1/3 Page 17 of 24 P.T.O. ्र प्रतिरोध R S, को बन्द व आवेश का र विभवान्तर तर के बराबर ति अवधि में सकती है। को खोल A circuit consisting of a capacitor C, a resistor of resistance R and an ideal battery of emf V, as shown in figure is known as RC series circuit. 4×1 As soon as the circuit is completed by closing key S1 (keeping S2 open) charges begin to flow between the capacitor plates and the battery terminals. The charge on the capacitor increases and consequently the potential difference $V_{\rm c}$ (= q/C) across the capacitor also increases with time. When this potential difference equals the potential difference across the battery, the capacitor is fully charged (Q = VC). During this process of charging, the charge q on the capacitor changes with time t as The charging current can be obtained by differentiating it and using $\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{\mathrm{m}x}\right) = \mathrm{m}\mathrm{e}^{\mathrm{m}x}$ Consider the case when R = 20 k Ω , C = 500 μF and V = 10 V. (i) The final charge on the capacitor, when key S1 is closed and S2 is (Å) 5 μC (C) 25 mC (B) 5 mC (D) 0.1 C (ii) For sufficient time the key S1 is closed and S2 is open. Now key S2 is closed and S₁ is open. What is the final charge on the capacitor? (A) Zero (B) 5 mC (C) 2.5 mC (iii) The dimensional formula for RC is (A) [M L² T⁻³ A⁻²] (B) [M⁰ L⁰ T⁻¹ A⁰] (C) [M-1 L-2 T4 A2] (D) [MO LOTAO] (iv) The key S1 is closed and S2 is open. The value of current in the resistor after 5 seconds, is (B) \sqrt{e} mA (C) $\frac{1}{\sqrt{e}}$ mA (D) $\frac{1}{2e}$ mA (iv) The key S_1 is closed and S_2 is open. The initial value of charging current in the resistor, is (A) 5 mA (B) 0.5 mA (C) 2 mA 55/1/3 Page 19 of 24 P.T.O. ## SECTION - E के लिए इनका (i) What are coherent sources? Why are they necessary for (a) observing a sustained interference pattern? Lights from two independent sources are not coherent. Explain. व्यवस्थित की का प्रकाश Two slits 0.1 mm apart are arranged 1.20 m from a screen. Light of wavelength 600 nm from a distant source is incident on the slits. How far apart will adjacent bright interference fringes be (2) Find the angular width (in degree) of the first bright fringe. OR (b) Define a wavefront. An incident plane wave falls on a convex (i) lens and gets refracted through it. Draw a diagram to show the incident and refracted wavefront. A beam of light coming from a distant source is refracted by a (ii) spherical glass ball (refractive index 1.5) of radius 15 cm. Draw the ray diagram and obtain the position of the final image formed. Two point charges 5 μ C and -1 μ C are placed at points (-3 cm, 32. (a) (i) 0, 0) and (3 cm, 0, 0) respectively. An external electric field $\vec{E} = \frac{A}{r^2} \hat{r}$ where $A = 3 \times 10^5$ Vm is switched on in the region. Calculate the change in electrostatic energy of the system due to the electric field. A system of two conductors is placed in air and they have net charge of $+80\mu\mathrm{C}$ and $-80\mu\mathrm{C}$ which causes a potential difference of 16 V between them. Find the capacitance of the system. If the air between the capacitor is replaced by a dielectric medium of dielectric constant 3, what will be the potential difference between the two conductors? If the charges on two conductors are changed to +160 μC and -160 μC, will the capacitance of the system change? Give reason for your answer. OR Consider three metal spherical shells A, B and C, each of radius (b) (i) R. Each shell is having a concentric metal ball of radius R/10. The spherical shells A, B and C are given charges +6q, -4q, and 14q respectively. Their inner metal balls are also given charges -2q. +8q and -10q respectively. Compare the magnitude of the electric fields due to shells A, B and C at a distance 3R from their centres. 55/1/3 पर आपतन को आरेख अपवर्तनांक गले अंतिम m. 0, 0) अनुप्रयुक्त की स्थिए µC है जो भर दिया 60 µC उत्तर के विजया ोलों को क्रमश: मे 3R 5 Page 21 of 24 P.T.O. 5 इ.स. कोई - 6 µC इन्द्र परिचाल में समान होई +5 µC आनेश १८ कीजिए। वें दशांद अनुसार ä Q और R के कीय क्षेत्रों के क्षेत्र B उत्पन्न कार्यतः बल स गमन कर फलस्वरूप गिरह जाती न होगा ? (ii) A charge -6 μC is placed at the centre B of a semicircle of radius 5 cm, as shown in the figure. An equal and opposite charge is placed at point D at a distance of 10 cm from B. A circumference. Calculate the work done on the charge. (a) (i) A proton moving with velocity \$\vec{V}\$ in a non-uniform magnetic field traces a path as shown in the figure. The path followed by the proton is always in the plane of the paper. What is the direction of the magnetic field in the region near points P, Q and R? What can you say about relative magnitude of magnetic fields at these points? (ii) A current carrying circular loop of area A produces a magnetic field B at its centre. Show that the magnetic moment of the loop is $\frac{2 \text{ BA}}{\mu_0} \sqrt{\frac{A}{\pi}}$. OF - (b) (i) Derive an expression for the torque acting on a rectangular current loop suspended in a uniform magnetic field. - (ii) A charged particle is moving in a circular path with velocity \$\vec{V}\$ in a uniform magnetic field \$\vec{B}\$. It is made to pass through a sheet of lead and as a consequence, it looses one half of its kinetic energy without change in its direction. How will (1) the radius of its path (2) its time period of revolution change?