JEE-MAIN EXAMINATION - JANUARY 2025

(HELD ON TUESDAY 28th JANUARY 2025)

TIME: 3:00 PM TO 6:00 PM

PHYSICS

SECTION-A

- 26. A uniform magnetic field of 0.4 T acts perpendicular to a circular copper disc 20 cm in radius. The disc is having a uniform angular velocity of $10 \, \pi$ rad s⁻¹ about an axis through its centre and perpendicular to the disc. What is the protential difference developed between the axis of the disc and the rim ? ($\pi = 3.14$)
 - (1) 0.0628 V
- (2) 0.5024 V
- (3) 0.2512 V
- (4) 0.1256 V

Ans. (3)

- 27. A parallel plate capacitor of capacitance 1 μF is charged to a potential difference of 20 V. The distance between plates is 1 μm . The energy density between plates of capacitor is :
 - (1) $1.8 \times 10^3 \text{ J/m}^3$
- (2) $2 \times 10^{-4} \text{ J/m}^3$
- (3) $2 \times 10^2 \text{ J/m}^3$
- (4) $1.8 \times 10^5 \text{ J/m}^3$

Ans. (1)

28. Match List-II with List-II

List-I

List-II

- (A) Angular Impulse
- (I) $[M^0 L^2 T^{-2}]$
- (B) Latent Heat
- (II) $[M L^2 T^{-3} A^{-1}]$
- (C) Electrical
- (III) $[M L^2 T^{-1}]$

resistivity

- (D) Electromotive
- (IV) $[M L^3 T^{-3} A^{-2}]$

force

Choose the **correct** answer from the options given below:

- (1) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (2) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)
- (3) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (4) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Ans. (1)

TEST PAPER WITH ANSWER

- 29. The ratio of vapour densities of two gases at the same temperature is $\frac{4}{25}$, then the ratio of r.m.s. velocities will be:
 - $(1) \frac{25}{4}$
- (2) $\frac{2}{5}$
- (3) $\frac{5}{2}$
- $(4) \frac{4}{25}$

Ans. (3)

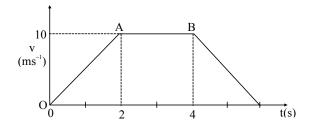
- **30.** The kinetic energy of translation of the molecules in 50g of CO, gas at 17°C is:
 - (1) 3986.3 J
- (2) 4102.8 J
- (3) 4205.5 J
- (4) 3582.7 J

Ans. (2)

- 31. In a long glass tube, mixture of two liquids A and B with refractive indices 1.3 and 1.4 respectively, forms a convex refractive meniscus towards A. If an object placed at 13 cm from the vertex of the meniscus in A forms an image with a magnification of '-2' then the radius of curvature of meniscus is:
 - (1) 1 cm
- (2) $\frac{1}{3}$ cm
- (3) $\frac{2}{3}$ cm
- (4) $\frac{4}{3}$ cm

Ans. (3)

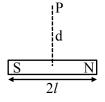
- **32.** The frequency of revolution of the electron in Bohr's orbit varies with n, the principal quantum number as
 - $(1) \frac{1}{n}$
- (2) $\frac{1}{n^3}$
- (3) $\frac{1}{n^4}$
- (4) $\frac{1}{n^2}$


Ans. (2)

- **33.** Which of the following phenomena can not be explained by wave theory of light?
 - (1) Reflection of light
- (2) Diffraction of light
- (3) Refraction of light
- (4) Compton effect

Ans. (4)

ALLEN


34. The velocity-time graph of an object moving along a straight line is shown in figure. What is the distance covered by the object between t = 0 to t = 4s?

- (1) 30 m
- (2) 10 m
- (3) 13 m
- (4) 11 m

Ans. (1)

35.

A bar magnet has total length 2l = 20 units and the field point P is at a distance d = 10 units from the centre of the magnet. If the relative uncertainty of length measurement is 1%, then uncertainty of the magnetic field at point P is:

- (1) 10%
- (2) 4%
- (3) 3%
- (4) 5%

Ans. (2,3)

- 36. Earth has mass 8 times and radius 2 times that of a planet. If the escape velocity from the earth is 11.2 km/s, the escape velocity in km/s from the planet will be:
 - (1) 11.2
- (2) 5.6
- (3) 2.8
- (4) 8.4

Ans. (2)

37. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Knowing initial position x_0 and initial momentum p_0 is enough to determine the position and momentum at any time t for a simple harmonic motion with a given angular frequency ω .

Reason (R) : The amplitude and phase can be expressed in terms of x_0 an p_0 .

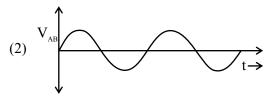
In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false.
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A).

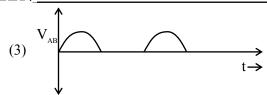
Ans. (4)

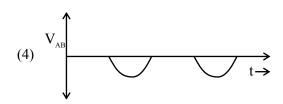
- 38. A concave mirror produces an image of an object such that the distance between the object and image is 20 cm. If the magnification of the image is '-3', then the magnitude of the radius of curvature of the mirror is:
 - (1) 3.75 cm
- (2) 30 cm
- (3) 7.5 cm
- (4) 15 cm

Ans. (4)


- 39. A body of mass 4 kg is placed on a plane at a point P having coordinate (3, 4) m. Under the action of force $\vec{F} = (2\hat{i} + 3\hat{j})N$, it moves to a new point Q having coordinates (6, 10)m in 4 sec. The average power and instantaneous power at the end of 4 sec are in the ratio of:
 - (1) 13:6
- (2) 6: 13
- (3)1:2
- (4)4:3

Ans. (2)




In the circuit shown here, assuming threshold voltage of diode is negligibly small, then voltage $V_{\scriptscriptstyle AB}$ is correctly represented by :

(1) V_{AB} would be zero at all times

ALLEN

Ans. (4)

An infinite wire has a circular bend of radius a, and carrying a current I as shown in figure. The magnitude of magnetic field at the origin O of the arc is given by:

$$(1) \frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{\pi}{2} + 1 \right]$$

(1)
$$\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{\pi}{2} + 1 \right]$$
 (2) $\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{3\pi}{2} + 1 \right]$

$$(3) \ \frac{\mu_0}{2\pi} \frac{I}{a} \left[\frac{\pi}{2} + 2 \right]$$

(3)
$$\frac{\mu_0}{2\pi} \frac{I}{a} \left[\frac{\pi}{2} + 2 \right]$$
 (4) $\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{3\pi}{2} + 2 \right]$

Ans. (2)

- 42. A uniform rod of mass 250 g having length 100 cm is balanced on a sharp edge at 40 cm mark. A mass of 400 g is suspended at 10 cm mark. To maintain the balance of the rod, the mass to be suspended at 90 cm mark, is
 - (1) 300 g
- (2) 190 g
- (3) 200 g
- (4) 290 g

Ans. (2)

a 400 g solid cube having an edge of length 10 cm 43. floats in water. How much volume of the cube is outside the water?

(Given: density of water = 1000 kg m^{-3})

- (1) 1400 cm³
- (2) 4000 cm³
- $(3) 400 \text{ cm}^3$
- (4) 600 cm³

Ans. (4)

The magnetic field of an E.M. wave is given by 44.

$$\vec{B} = \left(\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}\right) 30 \sin\left[\omega\left(t - \frac{z}{c}\right)\right] \text{ (S.I. Units)}$$

The corresponding electric field in S.I. units is:

(1)
$$\vec{E} = \left(\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j}\right) 30c \sin\left[\omega\left(t - \frac{z}{c}\right)\right]$$

(2)
$$\vec{E} = \left(\frac{3}{4}\hat{i} + \frac{1}{4}\hat{j}\right) 30 \cos \left[\omega \left(t - \frac{z}{c}\right)\right]$$

(3)
$$\vec{E} = \left(\frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}\right) 30 c \sin\left[\omega\left(t + \frac{z}{c}\right)\right]$$

(4)
$$\vec{E} = \left(\frac{\sqrt{3}}{2}\hat{i} - \frac{1}{2}\hat{j}\right) 30 c \sin \left[\omega \left(t + \frac{z}{c}\right)\right]$$

Ans. (1)

45. A balloon and its content having mass M is moving up with an acceleration 'a'. The mass that must be released from the content so that the balloon starts moving up with an acceleration '3a' will be: (Take 'g' as acceleration due to gravity)

$$(1) \frac{3Ma}{2a-g}$$

$$(2) \frac{3Ma}{2a+g}$$

$$(3) \frac{2Ma}{3a+g}$$

$$(4) \frac{2Ma}{3a-g}$$

Ans. (3)

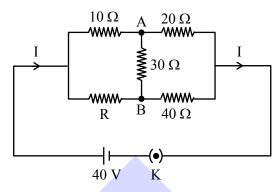
SECTION-B

A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field B exists into the page. The bar starts to move from the vertex at time t = 0 with a constant velocity. If the induced EMF is $E \propto t^n$, then value of n is .

Ans. (1)

47. An electric dipole of dipole moment 6×10^{-6} Cm is placed in uniform electric field of magnitude 10^6 V/m. Initially, the dipole moment is parallel to electric field. The work that needs to be done on the dipole to make its dipole moment opposite to the field, will be _____ J.

Ans. (12)


48. The volume contraction of a solid copper cube of edge length 10 cm, when subjected to a hydraulic pressure of 7 × 10⁶ Pa, would be ____ mm³.

(Given bulk modulus of copper = 1.4 × 10¹¹ Nm⁻²)

Ans. (50)

49. The value of current I in the electrical circuit as given below, when potential at A is equal to the potential at B, will be

A.

Ans. (2)

Ans. (54)