

E (MAIN) 2025

MEMORY BASED QUESTIONS & TEXT SOLUTION

SHIFT-1

DATE & DAY: 02nd April 2025 & Wednesday

PAPER-1

Duration: 3 Hrs. Time: 09:00 - 12:00 IST

SUBJECT: PHYSICS

Selections in JEE (Advanced)/ **IIT-JEE Since 2002**

Selections in JEE (Main)/ **AIEEE Since 2009**

Selections in NEET (UG)/ AIPMT/AIIMS Since 2012

Admission Open for 2025-26

Target: JEE (Advanced) | JEE (Main) | NEET (UG) | PCCP (Class V to X)

100% Scholarship on the basis of Class 10th & 12th & JEE (Main) 2025 %ile/ AIR

© REGISTERED & CORPORATE OFFICE (CIN: U80302RJ2007PLC024029):

CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

📞 0744-2777777 🚫 73400 10345 🎉 contact@resonance.ac.in | 🚭 www.resonance.ac.in | Follow Us: 🗟 🚮 🔝 @ResonanceEdu | 📝 @ResonanceEdu

This solutions was download from Resonance JEE (Main) 2025 Solution Portal

Resonance | JEE(Main) 2025 | DATE : 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

PART: PHYSICS

Which of the following statement (s) is correct is/are for the adiabatic process? (A) Molar heat capacity is zero.

- (C) Work done on gas is equal to increase in internal energy
- (D) The increase in temperature results in decrease in internal energy
- (1) A
- (2) BC
- (3) CD
- (4) AD

Ans. (1)

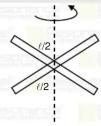
Sol.

$$q + w = \Delta E$$
 Heat Capacity (C) = $\frac{Q}{n\Delta T}$

- $W = \Delta E$
- Q = 0
- 2. Two point charges q and 9q are placed at distance of ℓ from each other. Then the electric field is zero at
 - (1) Distance $\frac{\ell}{4}$ from charge 9q
- (2) Distance $\frac{3\ell}{4}$ from charge q
- (3) Distance $\frac{\ell}{3}$ from charge 9 q
- (4) Distance $\frac{\ell}{4}$ from charge q

Ans. (4 Sol.

$$|E_1| = |E_2|$$


$$\frac{kq}{a^2} = \frac{k_{9q}}{(\ell - a)^2}, \quad \frac{1}{a} = \frac{3}{(\ell - a)}$$

$$\ell - a = 3a$$

$$a = \frac{\ell}{4}$$

Distance $\frac{\ell}{4}$ from charge q.

3. The moment of Inertia of a uniform rod of mass m and length I is α when rotated about an axis passing through centre and perpendicular to the length. If the rod is broken into equal halves and arranged as shown then the moment of Inertia about the given axis is

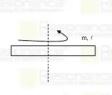
- $(1) 2 \alpha$
- (2) $\frac{\alpha}{2}$
- (3) 4 α
- (4) $\frac{\alpha}{4}$

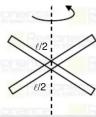
Ans. (4)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029


Toll Free: 1800 258 5555 S 7340010333 1 tocobook.com/ResonanceEdu www.youtube.com/resonanceEdu www.youtube.com/resonance.ac.in


This solution was download from Resonance JEE(Main) 2025 Solution portal

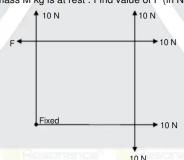
PAGE # 1

Resonance* | JEE(Main) 2025 | DATE : 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

Sol.

$$I = \frac{mI^2}{12}, \ \alpha = \frac{mI^2}{12}$$
 $I = I_1 + I_2$

$$\left(\frac{m}{m}\right)^2 \left(\frac{m}{m}\right)^2$$


$$= \frac{\left(2 \times 2\right)}{12} + \frac{\left(2 \times 2\right)}{12}$$

$$= \frac{1}{8} \frac{m^2}{12} + \frac{1}{8} \frac{m^2}{12} = \frac{1}{4} \frac{m^2}{12}$$

$$I = \frac{1}{4} \alpha$$

$$I = \frac{\alpha}{4}$$

4. A square shape lamina of mass M kg is at rest . Find value of F (in N)

(1) 1

(1) 10 N

(2) 15 N

(3) 20 N

(4) 30 N

Ans. (1)

Re<mark>lation between magnetic susceptibility and magnetic permeability?</mark>

(2) $\mu_r = 1 + x_m$

(3) $\mu_0 = 1 + x_m$

(4) $\mu = 1 + x_m$

Ans. (

5.

Sol. μ_r :

 $\mu_r = 1 + x_m$

 μ_0

 $\mu = \mu_0 (1 + x_m)$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333 ff tectook com/ResonanceEdd www.youtube.com/resonance.ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE(Main) 2025 Solution portal

PAGE#2

Resonance* | JEE(Main) 2025 | DATE : 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

- The ratio of magnetic field to center of circular coil to magnetic field at distance x from the centre of circular coil $\left(\frac{x}{R} = \frac{3}{4}\right)$
 - $(1) \frac{64}{99}$
- $(2) \frac{125}{64}$
- $(3) \frac{135}{74}$
- $(4) \frac{125}{32}$

Ans. (2

Sol. Magnetic field at center of circular coil $\vec{\beta}_1 = \frac{\mu_0 I}{2R}$

.....(1)

magnetic field at distance x from the centre of circular coil is $\vec{\beta}_2 = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$ (2)

 $\frac{\vec{\beta}_{1}}{\vec{\beta}_{2}} = \frac{\frac{\mu_{0}I}{2R}}{\frac{\mu_{0}IR^{2}}{2(R^{2} + x^{2})^{3/2}}} = \frac{2(R^{2} + x^{2})^{3/2}}{2R^{3}}$

$$2(R^{2} + x^{2})^{3/2}$$

$$\Rightarrow \frac{R^{3} \left(1 + \frac{x^{2}}{R^{2}}\right)^{3/2}}{R^{3}}$$

$$= \left(1 + \frac{9}{16}\right)^{3/2}$$

$$\left(\frac{25}{16}\right)^{3/2} \Rightarrow \left(\frac{5}{4}\right)^{3/2}$$

Find net electric force on point charge q:

$$(1) \ \frac{3}{2} \frac{\sigma q}{\epsilon_0}$$

$$(2) \frac{3\sigma q}{\epsilon_0}$$

$$(3) \frac{\sigma q}{2 \in 0}$$

$$(4) \frac{3\sigma q}{\epsilon_0}$$

Ans. Sol. F = qE

$$-q\left\{\frac{\sigma}{2\in_0} + \frac{2\sigma}{2\in_0}\right\}$$

$$= \frac{q\sigma}{2 \in 0} \times 3$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.**: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 S 7340010333 ff scebook com/Resonancedu vww.youtube.com/resonance ac.in | Cin: U80302RJ2007PLC024029

This solution was download from Resonance JEE(Main) 2025 Solution portal

Column - II

(iii) ML-2T-2

(iv) ML2T-1

(2) (A)- (iii), (B)-(ii), C-(i), D-(iv)

(4) (A)- ii, (B)-(iii), C-(i), D-(iv)

(i) M-1LT2 (ii) ML-1T-1 PAGE#3

Resonance | JEE(Main) 2025 | DATE : 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

Match the column

Column - I

- (A) Coefficient of viscosity
- (B) Pressure gradient
- (C) compressibility
- (D) Plank constant
- (1) (A)- (i), (B)-(iii), C-(ii), D-(iv)
- (3) (A)- ii, (B)-(iii), C-(iv), D-(i)

Ans. (4)

8.

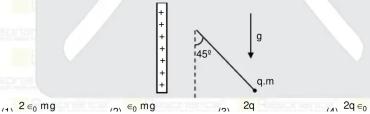
Sol. (A)
$$F = 6\pi \eta rv$$

$$\eta = \frac{mLT^{-2}}{L \times LT^{-1}}$$

$$\eta = mL^{-1}T^{-1}$$

(B)
$$PG = \frac{p}{x} = \frac{F}{A \times x}$$
$$- mLT^{-2}$$

$$= \frac{1}{L^2 \times L}$$
$$= M L^{-2}T^{-2}$$


(C)
$$Comp = \frac{1}{r}$$

$$= \frac{\Delta v}{\Delta p \times v} = \frac{A}{F}$$

$$L^{2}$$

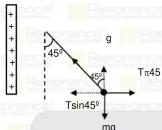
$$= \frac{L^{-}}{MLT^{-2}}$$
$$= M^{-1} LT^{2}$$

The figure shown an infinite plane having uniform charge, density σ and a small changed particle having charge q and mass m suspended by a light insulating thread. Find σ if the charge is in equilibrium

Ans. (1)

Responde Responde Responde Responde

Resonance Eduventures Ltd.


Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

This solution was download from Resonance JEE(Main) 2025 Solution portal

PAGE#4

RESONANCE® | JEE(Main) 2025 | DATE : 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

Sol.

$$T \sin 45^{\circ} = E_{q}$$
 $T \cos 45^{\circ} = mg$ $T \cos 45^$

$$E_{q} = mg$$

$$\frac{\sigma}{2 \in_{0}} = mg$$

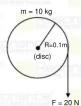
$$\sigma = \frac{2 \in_0 mg}{q}$$
 ans.

10. Find the dimension of ab^{-2} from the given formula $\left(P + \frac{a}{v^2}\right)(v - b) = RT$ where symbols have their usual

meaning

- (1) Energy
- (2) Energy density
- (3) Intensity
- (4) power

Ans. (2)


Sol.
$$\frac{a}{v^2} = p$$

$$b = v$$

$$\frac{a}{h^2} = \frac{pv^2}{v^2} = P$$

$$P = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$$

11. Find angular velocity when 1 m rope is pulled.

(1)
$$\omega = 30\sqrt{2}$$
 rad/sec (2) $\omega = 20\sqrt{2}$ rad/sec (3) $\omega = 2\sqrt{2}$ rad/sec (4) $\omega = 2\sqrt{20}$ rad/sec

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 📵 7340010333 📝 fecbook com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛅 www.youtube.com/resonance ac.in

This solution was download from Resonance JEE(Main) 2025 Solution portal

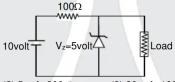
PAGE#5

Resonance | JEE(Main) 2025 | DATE: 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

Sol.

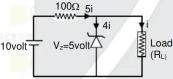
$$\alpha = \frac{F}{\frac{1}{2}mk} = \frac{2F}{mk}$$

$$I = \theta \times R$$


$$W^2 = W^2 + 2\alpha \theta$$

$$= 2 \times \frac{2F}{mk} \times \frac{1}{R}$$

$$\omega = \sqrt{\frac{4 \times 20}{10 \times}} \times \frac{1}{0.1}$$


$$\omega = 20\sqrt{2}$$

12. A zener diode of $V_z = 5$ volt is used as a voltage regulator. The unregulated supply voltage of the battery is 10 volt. The value of the series resistance is 100Ω . The current through the zener diode is 4 times the load current. The load resistance and the current through the load should be :

- (1) 10 mA, 500 Ω
- (2) 5 mA, 200 Ω
- (3) 20 mA, 100Ω
- (4) 15 mA, 300 Ω

Ans. Sol.

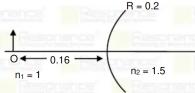
We have to assume that the zener breakdown is occurring. So the voltage across the zener diode as well as the load should be 5 volt. So the voltage across the series resistance will be

$$i_1 = \frac{10-5}{100} = 50 \text{mA}$$

$$5i = 50 \text{ mA}$$

Resistance of the load should be = $\frac{\Delta v}{i} = \frac{5}{10 \times 10^{-3}} = 500\Omega$

- 13. Which statement is correct
 - (A) Energy of Ground state of H atom is equal to energy of He+ atom in first excited state
 - (B) Energy of Ground state of H atom is equal to energy of He+ atom is second excited state.
 - (C) Energy of H atom is equal to energy of Li+3 atom in second excited state
 - (D) Energy of H atom is equal to energy of Li+3 atom in their excited state
 - (1) AC
- (2) AD
- (3) BC


(1) Ans.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🕒 7340010333 🚹 facebook.com/HesonanceEdu 💟 twitter.com/HesonanceEdu 🛅 www.youtube.com/hes

Which of the following is correct about image.

- (1) 0.4 cm left of current surface
- (2) 0.4 cm right of current surface (4) 0.2 cm right of current surface
- (3) 0.2 cm left of current surface
- Ans. (1)

Sol.
$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$$

$$\frac{1.5}{v} - \frac{1}{-0.16} = \frac{1.5 - 1}{0.2}$$

$$\frac{1.5}{v} = \frac{0.5}{0.2} - \frac{1}{0.16}$$

$$= \frac{5}{2} - \frac{100}{16}$$

$$\frac{1.5}{v} = \frac{40}{16} - \frac{100}{16} = \frac{-60}{16}$$

$$v = -\frac{16 \times 1.5}{60} = -0.4 \text{ cm}$$

- A cell phone has rating of 4.2 V, 5800 mA.hr. Find energy stored by cell phone battery within 1 hr. 15. (2) 87 kJ (3) 123 kJ
- Ans.
- (1) 65 kJ

(4) 175 kJ

Sol.

$$E = v i t = 4.2 \times \frac{5800}{1000} \times 3600$$

- $= 4.2 \times 58 \times 360$
- $=42\times58\times36$
- = 87696 $= 87 \, kJ$
- $X_1 = \sqrt{7}\sin(5t)$

$$X_2 = 2\sqrt{7} \sin(5t + \pi/3)$$

maximum acceleration for resultant SHM will be

- (1) $2\sqrt{7} \text{ m/s}^2$
- $(2) 2\sqrt{10} \text{ m/s}^2$
- (3) 175 m/s²
- (4) 125 m/s²

Ans.

Sol.
$$R = \sqrt{4(7) + 7 + 2(\sqrt{7})(2\sqrt{2})\frac{1}{2}}$$

- $=\sqrt{35+14}$
- $= \sqrt{49}$
- = 7

Resultant SHM will be

- $x = 7\sin(5t + \phi)$
- \therefore Maximum acceleration = $a\omega^2 = 7 \times 25 = 175 \text{ m/s}^2$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free: 1800 258 5555 🕲 7340010333 🜃 feebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔯 www.youtube.com/resonatch 🗈 biog.resonance.ac.ir

This solution was download from Resonance JEE(Main) 2025 Solution portal

PAGE#7

Resonance" | JEE(Main) 2025 | DATE : 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

- Angular separation between second maximum of left side of central maxima and third maxima of right 17. side of central maxima is 30 $^{\circ}$ when 628 nm light is used in YDSD then slit width in μm will be Ans.
- 06.00 Sol.
 - D ¯

A car travels a distance x with a constant speed of $v_1 = 5$ m/sec and then it travels further $\frac{3}{2}$ x distance 18. with a constant speed of v_2 (in m/sec). If the average speed during the entire journey is $\frac{50}{7}$ m/sec. then write the value of v2.

Ans. Sol.

$$\langle |V| \rangle = \frac{x + \frac{3}{2}x}{\frac{x}{v_1} + \frac{\frac{3}{2}x}{v_2}}$$

$$\frac{50}{7} = \frac{5\frac{x}{2}}{x\left(\frac{1}{5} + \frac{3}{2v_2}\right)} \Rightarrow v_2 = 10 \text{ m/sec}$$

19. A mono-atomic gas 'A' has only three translator degree of freedoms while a polyatomic gas has three translatory, three rotational and one vibrational mode. If the ratio if the adiabatic exponents $\frac{r_A}{r_B} = 1 + \frac{1}{n}$ then write the value of n in integers.

Ans.

Sol. For the gas A, f = 3

For the gas A,
$$f = 3$$

$$\Rightarrow r_A = 1 + \frac{2}{f} = 1 + \frac{2}{3} = \frac{5}{3}$$
For the gas B, $f = 3 + 3 + 2 = 8$

$$r_B = 1 + \frac{2}{f} = 1 + \frac{2}{8} = \frac{5}{4}$$

(1 Vibrational mode = 2 vibrational degree of freedom)

$$r_B = 1 + \frac{2}{f} = 1 + \frac{2}{8} = \frac{5}{4}$$

$$\Rightarrow \frac{r_A}{r_B} = \frac{\frac{5}{3}}{\frac{5}{4}} = \frac{4}{3} = 1 + \frac{1}{n} \Rightarrow n = 3$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.**: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 📵 7340010333 📝 tecebeek com/ResonanceEdu 💆 twitten.com/ResonanceEdu 🛅 www.youtube.com/resonance Acin

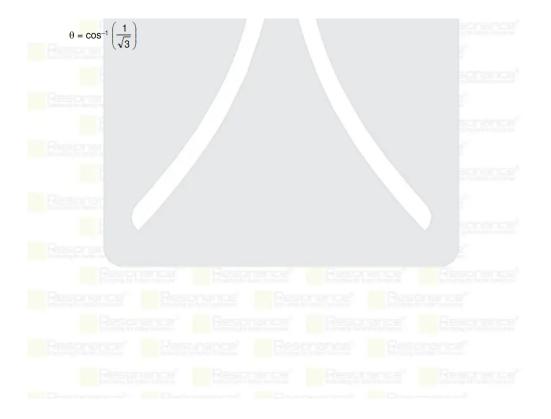
This solution was download from Resonance JEE(Main) 2025 Solution portal

PAGE#8

| JEE(Main) 2025 | DATE : 02-04-2025 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

20. The equation of wave front of a light wave is x + y + z = constant. The angle made by the direction of the light wave propagation with x-axis will be:

Ans. (2)


Sol. The equation of the wavefront is

$$x + y + z = constant$$

The directional ratios of its normal (i.e. the direction of wave propagation) will be (1, 1, 1) so the directional cosines of its normal = $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

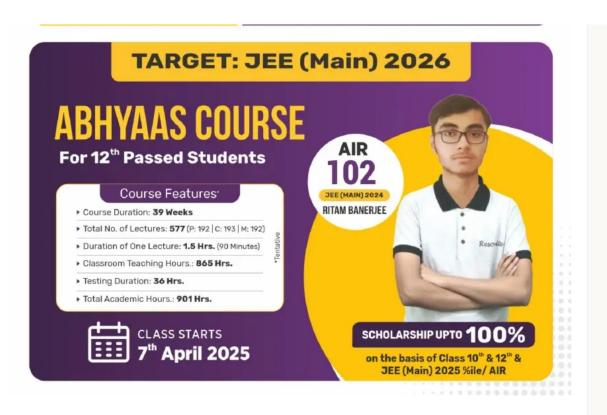
unit vector of the direction of light propagation
$$\hat{A} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$
 for angle with x-axis

$$\cos\theta = \frac{\hat{A}.\hat{i}}{|\hat{A}||\hat{i}|} = \frac{\left(\frac{1}{\sqrt{3}}\right)(1)}{1} = \frac{1}{\sqrt{3}}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222


To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555
7340010333
1 scebeek com/Resonance.du vww.youkne.com/resonance.du vww.youkne.com/resonance.ac.in | Cin : U80302RJ2007PLC024029

This solution was download from Resonance JEE(Main) 2025 Solution portal

PAGE#9

