Most Repeated Questions in JEE Mains from Number of Roots and relation b/w roots & coefficients

- Q. Let $\alpha\theta$ and $\beta\theta$ be the distinct roots of $2x^2 + (\cos\theta)x 1 = 0$, $\theta \in (0, 2\pi)$ If m and M are the minimum and the maximum values of $\alpha_\theta^4 + \beta_\theta^4$, then 16(M + m) equals :
- Q: The number of distinct real roots of the equation ||x + 1||x + 3| 4|x + 2| + 5 = 0 is
- Q: If the set of all values of a, for which the equation $5x^3$ 15x a = 0 has three distinct real roots, is the interval (α, β) , then β -2 α is equal to ______.
- Q: The number of distinct real roots of the equation |x||x + 2| 5|x + 1| 1 = 0 is _____.
- Q: If the equation $a(b c)x^2 + b(c a)x + c(a b) = 0$ has equal roots, where a + c = 15 and b = 36/5 then $a^2 + c^2$ is equal to _____.
- Q: Let α and β be the roots of the equation px² + qx r = 0, where p \neq 0. If p, q and r be the consecutive terms of a non constant G.P. and $1/\alpha + 1/\beta = \frac{3}{4}$, then the value of $(\alpha \beta)^2$ is:
- Q: Let S = $\{x \in \mathbb{R} : (\sqrt{3} + \sqrt{2})^x + (\sqrt{3} \sqrt{2})^x = 10\}$. Then the number of elements in S is:
- Q: The sum of all the real roots of the equation $(e^{2x} 4) (6e^{2x} 5e^{x} + 1) = 0$ is
- Q: . Let m and n be the numbers of real roots of the quadratic equations x^2 12x + [x] + 31 = 0 and x^2 5|x + 2| 4 = 0, respectively, where [x] denotes the greatest integer \leq x. Then m^2 + mn + n^2 is equal to _____.
- Q: If the value of real number a > 0 for which x^2 5ax + 1 = 0 and x^2 ax 5 = 0 have a common real root is $3/\sqrt{2}\beta$ then β is equal to _____.
- Q: The sum of the cubes of all the roots of the equation $x^4 3x^3 2x^2 + 3x + 1 = 10$ is _____.
- Q: The minimum value of the sum of the squares of the roots of $x^3 + (3 a)x + 1 = 2a$ is:
- Q: The number of distinct real roots of the equation $x^5 (x^3 x^2 x + 1) + x(3x^3 4x^2 2x + 4) 1 = 0$ is _____.