Most Repeated Questions in JEE Main Math from Number of relations, equivalence relation / minimum number of elements required to be added in set

Q: The relation $R = \{(x, y) : x, y \in z \text{ and } x + y \text{ is even} \}$ is:

Q: Let $A = \{1, 2, 3\}$. The number of relations on A, containing (1, 2) and (2, 3), which are reflexive and transitive but not symmetric, is _____.]

Q: Let $R = \{(1, 2), (2, 3), (3, 3)\}$ be a relation defined on the set $\{1, 2, 3, 4\}$. Then the minimum number of elements, needed to be added in R so the R becomes an equivalence relation, is:

Q: Let $X = R \times R$. Define a relation R on X as: (a1, b1) R (a2, b2) \Leftrightarrow b1 = b2.

Statement - I: R is an equivalence relation.

Statement - II : For some $(a, b) \in X$, the set $S = \{(x, y) \in X: (x, y) \mid R \mid (a, b)\}$ represents a line parallel to y = x

Q: Let the relations R1 and R2 on the set $X = \{1, 2, 3, ..., 20\}$ be given by R1 = $\{(x, y) : 2x - 3y = 2\}$ and R2 = $\{(x, y) : -5x + 4y = 0\}$. If M and N be the minimum number of elements required to be added in R1 and R2, respectively, in order to make the relations symmetric, then M + N equals

Q: Let a relation R on N × N be defined as : (x1, y1) R(x2, y2) if and only if $x1 \le x2$ or $y1 \le y2$. Consider the two statements : (I) R is reflexive but not symmetric. (II) R is transitive then which one of the following is true?

Q: Let P(S) denote the power set of S = $\{1, 2, 3, ..., 10\}$. Define the relations R1 and R2 on P(S) as AR1 B if (A \cap BC) \cup (B \cap AC) = ϕ and AR2 B if A \cup BC = B \cup AC, \forall A, B \in P(S). Then:

Q: Let R be a relation on N \times N defined by (a, b) R(c, d) if and only if ad(b - c) = bc(a-d). Then R is

Q: Let R be a relation defined on N as a R b is 2a + 3b s multiple of 5, a, $b \in N$. Then R is

Q: Let a set A = A1 U A2 U ... U Ak , where Ai \cap Ai = ϕ for i \neq j; 1 \leq i, j \leq k. Define the relation R from A to A by R = {(x, y) : y \in Ai if and only if x \in Ai , 1 \leq i \leq k}. Then, R is:

Q: Let R1 = $\{(a, b) \in N \times N : |a - b| \le 13\}$ and R2 = $\{(a, b) \in N \times N : |a - b| \ne 13\}$. Then on N:

Q: Let R1 and R2 be two relations defined on R by a R1 b \Leftrightarrow ab \geq 0 and a R2 b \Leftrightarrow a \geq b. Then