Most Repeated Questions in JEE Main Physics from Moment of Inertia

Q: A uniform circular disc of radius 'R' and mass 'M' is rotating about an axis perpendicular to its plane and passing through its centre. A small circular part of radius R/2 is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as
Q: Ratio of radius of gyration of a hollow sphere to that of a solid cylinder of equal mass, for moment of Inertia about their diameter axis AB as shown in figure is $\sqrt{8}/x$. The value of x is :
Q: Three balls of masses 2 kg, 4 kg and 6 kg respectively are arranged at centre of the edges of an equilateral triangle of side 2 m. The moment of inertia of the system about an axis through the centroid and perpendicular to the plane of triangle, will bekg m2 .
Q: . Four particles each of mass 1 kg are placed at four corners of a square of side 2 m. Moment of inertia of system about an axis perpendicular to its plane and passing through one of its vertex is kgm².
Q: Two identical spheres each of mass 2 kg and radius 50 cm are fixed at the ends of a light rod so that the separation between the centers is 150 cm. Then, moment of inertia of the system about an axis perpendicular to the rod and passing through its middle point is $x/20 \text{ kgm}2$, where the value of x is
Q: I_{CM} is moment of inertia of a circular disc about an axis (CM) passing through its center and perpendicular to the plane its center and perpendicular to the plane of disc. I_{AB} is it's moment of inertia about an axis AB perpendicular to plane and parallel to axis CM at a distance 2/3R from center. Where R is the radius of the disc. The ratio of I_{AB} and I_{CM} is x : 9. The value of x is
Q: Two discs of same mass and different radii are made of different materials such that their thicknesses are 1 cm and 0.5 cm respectively. The densities of materials are in the ratio $3:5$. The moment of inertia of these discs respectively about their diameters will be in the ratio of $x/6$. The value of x is
Q: A pulley of radius 1.5 m is rotated about its axis by a force F = (12t - 3t2) N applied tangentially (while t is measured in seconds). If moment of inertia of the pulley about its axis of rotation is 4.5 kg m2 , the number of rotations made by the pulley before its direction of motion is reversed, will be K/π . The value of K is