
JEE Advanced Questions Based on Most Repeated Concepts of Chemical Bonding

Q: Consider the following compounds in the liquid form: O_2 , HF, H_2O , NH_3 , H_2O_2 , CCI_4 , $CHCI_3$, C_6H_6 , C_6H_5CI

When a charged comb is brought near their flowing stream, how many of them show deflection as per the following figure?

Q: Among B_2H_6 , $B_3N_3H_6$, N_2O , N_2O_4 , $H_2S_2O_3$ and $H_2S_2O_8$, the total number of molecules containing covalent bond between two atoms of the same kind is_____.

Q: . Each of the following options contains a set of four molecules. Identify the option(s) where all four molecules possess permanent dipole moment at room temperature.

A. NO_2 , NH_3 , $POCI_3$, CH_3CI

B. BF_3 , O_3 , SF_6 , XeF_6

C. $BeCl_2$, CO_2 , BCl_3 , $CHCl_3$

Q: The sum of the number of lone pairs of electrons on each central atom in the following species is.

[TeBr
$$_6$$
] 2 - , [BrF2] $^+$, SNF $_3$ and [XeF $_3$] $^-$

(Atomic numbers:
$$N = 7$$
, $F = 9$, $S = 16$, $Br = 35$, $Te = 52$, $Xe = 54$)

Q: Among the triatomic molecules/ions, Be Cl_2 , N $^{3-}$, N $_2$ O, NO $^{+2}$, O $_3$, SCl $_2$, ICl $_2$, I $^{3-}$ and XeF $_2$, and XeF $_2$, the total number of linear molecules(s)/ion(s) where the hybridization of the central atom does not have contribution from the d-orbital(s) is

[Atomic number:
$$S = 16$$
, $CI = 17$, $I = 53$ and $Xe = 54$]

Q: A list of species having the formula XZ4 is given below:

$$XeF_4$$
, SF_4 , SiF_4 , BF^{4-} , BrF^{4-} , $[Cu(NH_3)4]^{2+}$, $[FeCl_4]^{2-}$, $CoCl_4^{2-}$ and $[PtCl_4]^{2-}$

Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is.

Q: Based on VSEPR theory, the number of 90 degrees F-Br-F angles in BrF₅ , is

Q: . The compound (s) with two lone pairs of electrons on the central atom is (are)

- A. BrF₅
- B. CIF₃
- C. XeF₄
- D. Sf₄

Q: Assuming 2s - 2p mixing is not operative the paramagnetic species among the following is:

- A. Be₂
- B. B₂
- $C. C_2$
- D. N₂

Q: Among H_2 , He^{2+} , Li_2 , Be_2 , B_2 , C_2 , N_2 , O^{2-} and F_2 , the number of diamagnetic species is (Atomic numbers: H = 1, He = 2, Li = 3, Be = 4, B = 5, C = 6, N = 7, O = 8, F = 9)