JEE Advanced Questions Based on Most Repeated Concepts of Coordination Compounds

Q: Total number of cis N-Mn-Cl bond angles (that is, Mn-N and Mn-Cl bonds in cis positions) present in a molecule of cis- $[Mn(en)_2Cl_2]$ complex is _____ (en = NH₂CH₂CH₂NH₂)

Q: The number of geometric isomers possible for the complex $[CoL_2Cl_2]^-$ (L=H₂NCH₂CH₂O⁻) is:

Q: Among the complex ions, $[Co(NH_2 .CH_2 .CH_2 .NH_2)_2Cl_2|]^+$, $[CrCl_2 (C_2O_4)^2]^{3-}$, $[Fe(H_2O)^4 (OH)_2]^+$, $[Fe(NH_3)_2 (CN)_4]^-$, $[Co(NH^{2-} CH^{2-} NH_2)_2 (NH3)Cl]^{2+}$ and $[Co(NH_3)_4 (H_2O)Cl]^{2+}$, the number of complex ion(s) that show(s) cis-trans isomerism is:

Q: EDTA ⁴⁻ i9s ethylenediamine tetraacetate ion The total number of N-CO-O bond angles in [Co(EDTA)] ⁻¹ complex ion is

Q: The pair(s) of coordination complexes/ions exhibiting the same kind of isomerism is/are

- A. $[Cr(NH_3)_5Cl]Cl_2$ and $[Cr(NH_3)_4Cl_2]Cl$
- B. $[Co(NH_3)_4Cl_2]^+$ and $[Pt(NH_3)_2(H_2O)Cl]^+$
- C. [CoBr₂Cl₂]²⁻ and [PtBr₂Cl₂]²⁻
- D. $[Pt(NH_3)_3 (NO_3)]Cl$ and $[Pt(NH_3)_3Cl]Br$

Q: The geometries of the ammonia complexes of Ni²⁺, Pt²⁺ and Zn²⁺, respectively, are

- A. octahedral, square planar and tetrahedral
- B. square planar, octahedral and tetrahedral
- C. tetrahedral, square planar and octahedral
- D. octahedral, tetrahedral and square planar

Q: Consider the following complex ions, P,Q and R.

$$P = [FeF_6]^{3-}, Q = [V(H_2O)_6]^{2+} \text{ and } R = [Fe(H_2O)_6]^{2+}$$

The correct order of the complex ions, according to their spin-only magnetic moment values (in B.M.) is

A.R < Q < P

- B. Q < R < P C. R < P < Q D. Q < P < R
- Q: Among the species given below, the total number of diamagnetic species is _____. H atom, NO $_2$ monomer, O $^{2-}$ (superoxide), dimeric sulphur in vapour phase, Mn $_3$ O $_4$, (NH $_4$) $_2$ [FeCl $_4$], (NH $_4$) $_2$ [NiCl $_4$], K $_2$ MnO $_4$, K $_2$ CrO $_4$.
- Q: For the octahedral complexes of Fe $^{3+}$ in SCN $^-$ (thiocyanato-S) and in CN $^-$ ligand environments, the difference between the spin-only magnetic moments in Bohr magnetons (when approximated to the nearest integer) is _____. [Atomic number of Fe = 26]