## JEE Advanced Questions Based on Most Repeated Concepts of Trigonometry

- Q: If A + B + C = 1800 then the value of tan A + tan B + tan C is
- Q: If  $\alpha = \cos^{-1}(\%)$ ,  $\beta = \tan -1(\%)$ , where  $0 < \alpha$ ,  $\beta < \pi/2$ , then  $\alpha \beta$  is
- Q: The number of values of  $\theta$  in the interval  $(-\pi/2, \pi/2)$  such that  $\theta \neq n\pi/5$  for  $n = 0, \pm 1, \pm 2$  and  $\tan \theta = \cot 5\theta$  as well as  $\sin 2\theta = \cos 4\theta$
- Q: The value of tan 60 tan 420 tan 660 tan 780 is
- Q: The positive integer value of n>3 satisfying the equation  $1/\sin(\pi/n) = 1/\sin(2\pi/n) + 1/\sin(3\pi/n)$
- Q: Considering only the principal values of inverse functions, the set A =  $\{x \ge 0: \tan -1 (2x) + \tan -1 (3x) = \pi/4\}$
- Q: Let the function f:  $(0, \pi) \to R$  be defined by  $f(\theta) = (\sin \theta + \cos \theta) \ 2 + (\sin \theta \cos \theta) \ 4$ . Suppose, the function f has a local minimum at  $\theta$  precisely when  $\theta \in \{\lambda_1 \pi, \dots, \lambda_r \pi\}$ , where  $0 < \lambda_1 < \dots < \lambda_r < 1$ . Then the value of  $\lambda_1 + \dots + \lambda_r$  is
- Q: Let a, b, c be three non zero real numbers such that the equation  $\sqrt{3}a \cos x + 2b \sin x = c$ , x belongs to  $[-\pi/2, \pi/2]$  has two distinct roots  $\alpha$  and  $\beta$  with  $\alpha + \beta = \pi/3$ . Then the value of b/a is
- Q: The value of  $\sqrt{3}$  cosec 20° sec 20° is equal to
- Q: If  $f(x) = 2 \tan^{-1}x + \sin^{-1}(2x/(1+x^2))$ , x>1, then f(5) is equal to
- Q: The principal value of  $tan^{-1}$  (cot  $43\pi/4$ ) is
- Q: If  $\alpha = 3 \sin^{-1} (6/11)$  and  $\beta = 3 \cos^{-1} (4/9)$ , where the inverse trigonometric functions take only the principal values, then the correct option(s) is (are)
- Q: If  $\sqrt{2} \sin \alpha / \sqrt{(1 + \cos 2\alpha)} = 1/7$  and  $\sqrt{((1 \cos 2\beta)/2)} = 1/\sqrt{10}$ , α, β ∈ (0, π/2), then tan (α + 2β) is equal to
- Q: The value of tan -1  $[(\sqrt{(1+x^2)} + \sqrt{(1-x^2)})/(\sqrt{(1+x^2)} \sqrt{(1-x^2)})]$ ,  $|x| < \frac{1}{2}$ ,  $x \ne 0$ , is equal to
- Q: The principal value of  $\sin^{-1} (\sin 2\pi/3)$  is
- Q: A possible value of tan ( $\frac{1}{4}$  sin  $\frac{-1}{4}$   $\sqrt{63/8}$ ) is:

Q: If S is the sum of the first 10 terms of the series  $\tan^{-1}(1/3) + \tan^{-1}(1/7) + \tan^{-1}(1/13) + \tan^{-1}(1/13$ 

Q: For  $x \in (0, \pi)$ , the equation  $\sin x + 2 \sin 2x - \sin 3x = 3$  has

Q: If  $5(\tan^2 x - \cos^2 x) = 2\cos 2x + 9$ , then the value of  $\cos 4x$  is :

Q: The solution of the equation  $\tan \theta$ .  $\tan 2 \theta = 1$  is

Q: If  $\sin \theta = 3 \sin (\theta + 2\alpha)$ , then the value of  $\tan (\theta + \alpha) + 2 \tan \alpha$  is

Q: The number of distinct solutions of equation  $(5/4)\cos^2 2x + \cos^4 x + \sin^4 x + \cos^6 x + \sin^6 x = 2$  in the interval  $[0, 2\pi]$  is

Q: For what and only what values of  $\alpha$  lying between 0 and  $\pi$  is the inequality  $\sin \alpha \cos^3 \alpha > \sin^3 \alpha \cos \alpha$  valid?