PART - C (CHEMISTRY)

SECTION - A

(One Options Correct Type)

This section contains **20 multiple choice questions**. Each question has **four choices** (1), (2), (3) and (4), out of which **ONLY ONE** option is correct.

*61. Given below are two statements:

Statement (I): Aqueous solution of ammonium carbonate is basic.

Statement (II): Acidic/basic nature of salt solution of a salt of weak acid and weak base depends on K_a and K_b value of acid and the base forming it.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Statement I is correct but Statement II is incorrect
- (3) Both Statement I and Statement II are correct
- (4) Both Statement I and Statement II are incorrect

Ans. (3)

Sol. pK_a of carbonic acid 6.36 & 10.33.

pK_b of ammonium hydroxide = 4.74

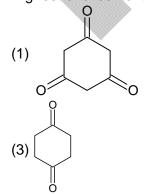
So, pH =
$$7 + \frac{1}{2} (pK_a - pK_b)$$

$$pH > 7 \rightarrow (Basic)$$

62. Yellow compound of lead chromate gets dissolved on treatment with hot NaOH solution. The product of lead formed is a:

- (1) Neutral complex with coordination number four
- (2) Dianionic complex with coordination number six
- (3) Dianionic complex with coordination number four
- (4) Tetraanionic complex with coordination number six

Ans. (3)


Sol.

$$PbCrO_4 + 4NaOH \longrightarrow Na_2CrO_4 + Na_2[Pb(OH)_4]$$

(Lead complex)

Dianionic with CN = 4.

*63. Highest enol content will be shown by:

Sol.

64. The electronic configuration for Neodymium is:

[Atomic Number for Neodymium 60]

(1) [Xe]4f⁴6s²

(2) [Xe]4f¹5d¹6s²

(3) [Xe]4f⁶6s²

(4) [Xe]5f⁷7s²

Ans. (1)

Sol. $Nd = [Xe]4f^46s^2$

- 65. A solution of two miscible liquids showing negative deviation from Raoult's law will have:
 - (1) decreased vapour pressure, increased boiling point
 - (2) increased vapour pressure, decreased boiling point
 - (3) decreased vapour pressure, decreased boiling point
 - (4) increased vapour pressure, increased boiling point

Ans. (1)

Sol.

$$P_{s} < x_{A}P_{A}^{o} + x_{B}P_{B}^{o}$$

So, vapour pressure is decreased and boiling point is increased.

- 66. The correct statement regarding nucleophilic substitution reaction in a chiral alkyl halide is:
 - (1) Racemisation occurs in S_N1 reaction and retention occurs in S_N2 reaction.
 - (2) Racemisation occurs in S_N1 reaction and inversion occurs in S_N2 reaction.
 - (3) Racemisation occurs in both S_N1 and S_N2 reactions.
 - (4) Retention occurs in S_N1 reaction and inversion occurs in S_N2 reaction.

Ans. (2)

- *67. Choose the polar molecule from the following:
 - (1) CCI₄

(2) $CH_2 = CH_2$

(3) CO₂

(4) CHCl₃

Ans. (4)

Sol. $CCl_4 \longrightarrow \mu = 0$,

$$\longrightarrow \mu = 0$$
, non polar

$$CH_2 = CH_2 \longrightarrow \mu = 0$$
, non polar

$$CO_2 \longrightarrow \mu = 0$$
, non polar

$$CHCl_{_{3}}{\longrightarrow}\mu\neq0,\ polar$$

68. Consider the following complex ions

$$\begin{split} P &= \left[Fe F_6 \right]^{3-} \\ Q &= \left[V \left(H_2 O \right)_6 \right]^{2+} \\ R &= \left[Fe \left(H_2 O \right)_6 \right]^{2+} \end{split}$$

The correct order of the complex ions, according to their spin only magnetic moment values (in B.M.) is:

(1) R < P < Q

(2) Q < P < R

(3) Q < R < P

(4) R < Q < P

Ans. (3)

Sol.
$$P = [FeF_6]^{3-}$$

$$Fe^{3+}$$
; $F \rightarrow WFL$

 $d^5 \rightarrow 5$ unpaired electron

$$Q = \left[V \left(H_2 O \right)_6 \right]^{2+}$$

$$V^{2+}; H_2O$$

 \downarrow

 $Fe^{2+} \rightarrow d^6 \rightarrow 4$ unpaired electron

So, order of spin only magnetic moment

- *69. Which of the following electronic configuration would be associated with the highest magnetic moment?
 - (1) $[Ar]3d^7$

(2) $[Ar]3d^3$

(3) [Ar]3d⁸

(4) [Ar]3d⁶

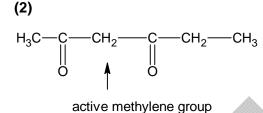
Ans. (4)

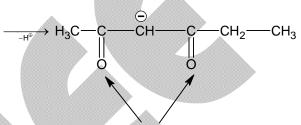
Sol. 1. $[Ar]3d^7 \rightarrow 3$ unpaired electron

- 2. $[Ar]3d^3 \rightarrow 3$ unpaird electron
- 3. $[Ar]3d^8 \rightarrow 2$ unpaired electron
- 4. $[Ar]3d^6 \rightarrow 4$ unpaired electron
- *70. Given below are two statements:

Statement (I): p-nitrophenol is more acidic than m-nitrophenol and o-nitrophenol.

Statement (II): Ethanol will give immediate turbidity with Lucas reagent.


In the light of the above statements, choose the correct answer from the options given below:


- (1) **Statement I** is true but **Statement II** is false
- (2) Both Statement I and Statement II are false
- (3) Both Statement I and Statement II are true
- (4) Statement I is false but Statement II is true
- Ans. (1)
- Sol. Statement (I) is correct.

C₂H₅OH is 1° alcohol so does not give turbidity.

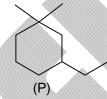
*71. Which of the following has highly acidic hydrogen?

Ans. Sol.

two electron withdrawing group

- 72. Element not showing variable oxidation state is:
 - (1) Chlorine

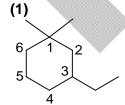
(2) Fluorine


(3) Bromine

(4) lodine

Ans. (2)

Sol. Fluorine does not show variable oxidation state.


*73. IUPAC name of following compound (P) is:

- (1) 3-Ethyl-1,1-dimethylcyclohexane
- (2) 1-Ethyl-3,3-dimethylcyclohexane
- (3) 1,1-Dimethyl-3-ethylcyclohexane
- (4) 1-Ethyl-5,5-dimethylcyclohexane

Ans.

Sol.

IUPAC name 3-ethyl-1,1-dimethylcyclohexane

*74. Given below are two statements:

Statement (I): The 4*f* and 5*f*-series of elements are placed separately in the Periodic table to preserve the principle of classification.

Statement (II): s-block elements can be found in pure form in nature.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

Ans. (1)

Sol. Statement I is true but Statement II is false

- 75. NaCl reacts with conc. H₂SO₄ and K₂Cr₂O₇ to give reddish fumes (B), which react with NaOH to give yellow solution (C). (B) and (C) respectively are:
 - (1) CrO₂Cl₂, Na₂Cr₂O₇

(2) CrO₂Cl₂, Na₂CrO₄

(3) CrO₂Cl₂, KHSO₄

(4) Na₂CrO₄, CrO₂Cl₂

Ans. (2)

Sol. NaCl + conc. $H_2SO_4 + K_2Cr_2O_7 \longrightarrow CrO_2Cl_2 \xrightarrow{NaOH} Na_2CrO_4$ (reddish fumes) (Yellow)

*76. Given below are two statements : one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): Melting point of Boron (2453 K) is unusually high in group 13 elements. **Reason (R):** Solid Boron has very strong crystalline lattice.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false.
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A).

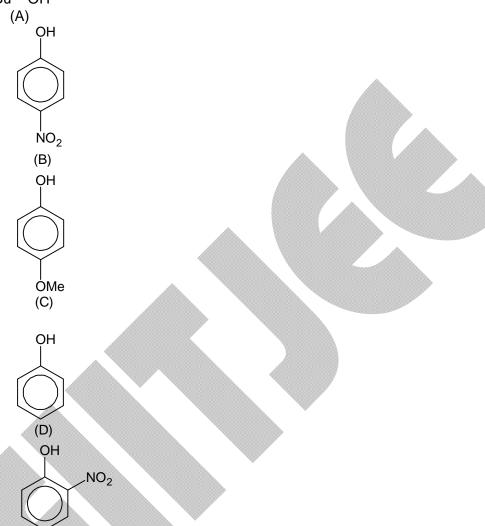
Ans. (1)

Sol. Assertion is correct, Reason is also correct and correct explanation as well.

*77. The ascending order of acidity of – OH group in the following compounds is:

(E)
$$O_2N$$
—OH
 O_2

Choose the correct answer from the options given below:


Options:

$$\begin{array}{l} (1) \ (C) < (A) < (D) < (B) < (E) \\ (3) \ (A) < (D) < (C) < (B) < (E) \end{array}$$

 $\begin{array}{l} (2) \ (C) < (D) < (B) < (A) < (E) \\ (4) \ (A) < (C) < (D) < (B) < (E) \end{array}$

Ans. **(4)** Sol.

Bú – OH

Order of A < C < D < B < E

 NO_2 (E)

*78. Cyclohexene _type of an organic compound. is

- (1) Benzenoid aromatic
- (3) Alicyclic

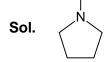
(2) Acyclic

- Ans.
 - (3)
- Sol. is Alicyclic

(4) Benzenoid non-aromatic

JEE-MAIN-2024 (27th January-First Shift)-MPC-30

*79. Which of the following is strongest Bronsted base?



Ans. (4)

is strongest base as its lone pair electron are localised

80. Two nucleotides are joined together by a linkage known as:

(1) Phosphodiester linkage

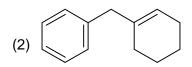
(2) Disulphide linkage

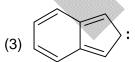
(3) Peptide linkage

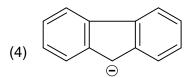
(4) Glycosidic linkage

Ans. (1)

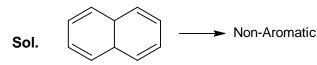
Sol. Nucleotides are joined together by phosphodiester linkage between 5' and 3' carbon atoms of pentose sugar.


SECTION - B


(Numerical Answer Type)


This section contains **10** Numerical based questions. The answer to each question is rounded off to the nearest integer value.

*81. Among the given organic compounds, the total number of aromatic compounds is_____



Ans. 3

*82. From the given list, the number of compounds with +4 oxidation state of Sulphur is _______ SO₃, H₂SO₃, SOCl₂, SF₄, BaSO₄, H₂S₂O₇

Ans. 3
Sol.
$$SO_3 \rightarrow +6$$

 $H_2SO_3 \rightarrow +4$
 $SOCl_2 \rightarrow +4$
 $SF_4 \rightarrow +4$
 $BaSO_4 \rightarrow +6$
 $H_2S_2O_7 \rightarrow +6$

*83. If three moles of an ideal gas at 300 K expand isothermally from 30 dm³ to 45 dm³ against a constant opposing pressure of 80 kPa, then the amount of heat transferred is______J.

Ans. 1200
Sol.
$$W = -P_{ext}\Delta V$$

 $= -80 \times 10^3 \times 15 \times 10^{-3} \text{ N/m}^2 \times \text{m}^3$
 $= -1200 \text{ J}$
 $T \rightarrow \text{constant} \Rightarrow \Delta U = 0$
 $q = -W \Rightarrow q = 1200 \text{ J}$

*84. Sum of bond order of CO and NO⁺ is_____

Ans. 6
Sol. Bond order of $CO \equiv 3$ Bond order of $NO^+ \equiv 3$

*85. Mass of methane required to produce 22 g of CO_2 after complete combustion is _____g. [Given Molar mass in g mol⁻¹ C = 12.0, H = 1.0, O = 16.0]

Ans. 8

Sol.
$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

Mass of CH_4 required $= \frac{22}{44} \times 16 = 8 \text{ g}$.

- *86. 3-Methylhex-2-ene on reaction with HBr in presence of peroxide forms an addition product (A). The number of possible stereoisomers for 'A' is_____.
- Ans. 4

- 87. The mass of silver (Molar mass of Ag : 108 gmol^{-1}) displaced by a quantity of electricity which displaces 5600 mL of O_2 at S. T. P. will be _____g.
- Ans. 108
 Sol. $\left(\frac{W}{E}\right)_{Ag} = \left(\frac{W}{E}\right)_{O_2};$ $W_{O_2} = \frac{5600}{22400} \times 32 = 8 \text{ g}$

$$\frac{108}{108} = \frac{1}{8}$$

$$W = 108 g$$

88. Consider the following data for the given reaction

The order of the reaction is_____.

Ans. 2

Sol.
$$r = k[HI]^x$$

 $r_1 = k[HI]_1^x$; $7.5 \times 10^{-4} = k[0.005]^x$... (1)
 $r_2 = k[HI]_2^x$; $3.0 \times 10^{-3} = k[0.01]^x$... (2)
 $\frac{(1)}{(2)} \Rightarrow \frac{1}{4} = \left(\frac{1}{2}\right)^x \Rightarrow x = 2$

- *89. The number of electrons present in all the completely filled subshells having n = 4 and $s = +\frac{1}{2}$ is ______ (where n = principal quantum number and s = spin quantum number)
- Ans. 16

- **Sol.** For n = 4 possible subshells are 4s, 4p, 4d and 4f. So, number of electron with $s=+\frac{1}{2};=16$
- *90. Among the following, total number of meta directing functional groups is_____. (Integer based) __OCH₃, _NO₂, _CN, _CH₃, _NHCOCH₃, _COR, _OH, _COOH, _CI

Ans. 4
Sol. –NO₂, –CN, –COR, –COOH are meta directing.

