

Sol. $\phi = NAB = (1)(1)[\sin(100t)]$

$$\phi = \sin(100t)$$

$$e = -\frac{d\phi}{dt} = -\frac{d}{dt}[\sin(100t)] = -100\cos(100t)$$

$$e = -100 \cos(100t) \text{ volt}$$

$$\text{current : } i = \frac{E}{R} = \frac{-100\cos(100t)}{100} = -\cos(100t)$$

$$\text{Heat : } \int i^2 R dt = \int [\cos^2(100t)] 100 dt$$

$$= 100 \int_0^T \cos^2(100t) dt$$

$$\text{For 1 time period : } \langle \cos^2(100t) \rangle = \frac{1}{2}$$

$$= 100 \times \frac{T}{2} = 50T = 50 \left(\frac{2\pi}{\omega} \right) = \pi$$

5. A charge $q_1 = 10^{-6} \text{ C}$ is at $(0, 0, 0)$. Another charge $q_2 = 2 \mu\text{C}$ is taken from A $(4, 4, 2)$ to B $(2, 2, 1)$.

Find work done by external :

(1) $3 \times 10^{-7} \text{ J}$ (2) $2 \times 10^{-7} \text{ J}$
 (3) $3 \times 10^{-5} \text{ J}$ (4) $4 \times 10^{-7} \text{ J}$

Ans. (1)

$$\text{Sol. } V_A = \frac{Kq_1}{r_A} = \frac{K \times 10^{-10}}{\sqrt{16+16+4}}$$

$$= \frac{9 \times 10^9 \times 10^{-10}}{6} = \frac{3}{2} \times 10^{-1} \text{ Volt}$$

$$V_B = \frac{Kq_1}{r_B} = \frac{9 \times 10^9 \times 10^{-10}}{3} = 3 \times 10^{-1} \text{ Volt}$$

$$W = q_2(V_B - V_A) = 2 \times 10^{-6} (3 - 1.5) \times 10^{-1}$$

$$W = 3 \times 10^{-7} \text{ Joule}$$

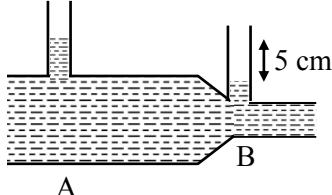
6. An electromagnetic wave has electric field component

$$E_z = (63 \text{ V/m}) \sin(\omega t - kx)$$

The corresponding magnetic field component should be :

(1) $B_y = -2.1 \times 10^{-7} \sin(\omega t - kx)$
 (2) $B_y = 2.1 \times 10^{-7} \sin(\omega t + kx)$
 (3) $B_z = 63 \sin(\omega t - kx)$
 (4) $B_z = 2.1 \times 10^{-7} \sin(\omega t + kx)$

Ans. (1)


Sol. $E \rightarrow \hat{k}, C \rightarrow \hat{i}$

$$\hat{C} \times \hat{E} = \hat{B} = -\hat{j}$$

$$B_0 = \frac{E_0}{C} = \frac{63}{3 \times 10^8} = 2.1 \times 10^{-7}$$

$$B_y = -(2.1 \times 10^{-7}) \sin(\omega t - kx)$$

7.

As shown in the figure find volume flow rate at cross section-B. Given area at A is 6 cm^2 and at B is 3 cm^2 :

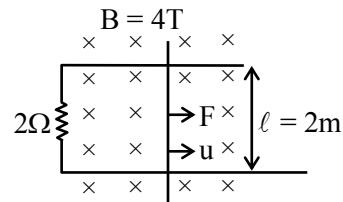
(1) $2\sqrt{2} \text{ m}^3/\text{s}$ (2) $2\sqrt{3} \text{ m}^3/\text{s}$
 (3) $3\sqrt{2} \text{ m}^3/\text{s}$ (4) $3\sqrt{3} \text{ m}^3/\text{s}$

Ans. (2)

$$\text{Sol. } \rho gh = \frac{1}{2} \rho (v_B^2 - v_A^2)$$

$$v_B = 2v_A$$

$$\rho gh = \frac{1}{2} \rho (3v_A^2)$$


$$v_A = \sqrt{\frac{2gh}{3}}$$

$$\text{vol-flow rate : } (6) \sqrt{\frac{2gh}{3}}$$

$$\Rightarrow \sqrt{\frac{2gh \times 36}{3}} = \sqrt{\frac{2 \times 10 \times 5 \times 36}{100 \times 3}}$$

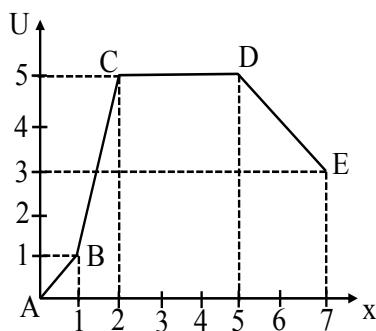
$$\text{Vol. flow rate} = 2\sqrt{3} \text{ m}^3/\text{s}$$

8. As shown in the figure find force required to move rod with constant velocity 15 m/s in uniform magnetic field :

(1) 480 N (2) 500 N
 (3) 380 N (4) 280 N

Ans. (1)

Predict your JEE Main 1 2026 percentile

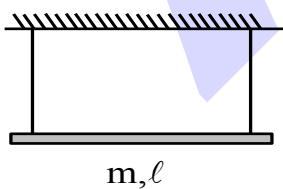

Try ALLEN's FREE Percentile Predictor

Check Now

14. A graph of potential energy as position is given below. Give the order of magnitude of forces.

(1) $|F_{CD}| < |F_{AB}| = |F_{DE}| < |F_{BC}|$
 (2) $|F_{CD}| < |F_{AB}| > |F_{DE}| < |F_{BC}|$
 (3) $|F_{CD}| < |F_{AB}| < |F_{DE}| < |F_{BC}|$
 (4) $|F_{CD}| = |F_{AB}| = |F_{DE}| < |F_{BC}|$

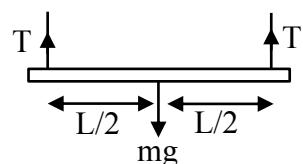
Ans. (1)


$$\text{Sol. } |F_{AB}| = \left| \frac{-dU}{dx} \right| = \frac{1-0}{1-0} = 1$$

$$|F_{BC}| = \left| \frac{-dU}{dx} \right| = \frac{5-1}{2-1} = 4$$

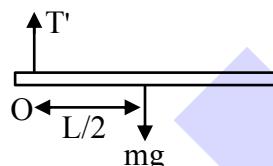
$$|F_{CD}| = \left| \frac{-dU}{dx} \right| = 0$$

$$|F_{DE}| = \left| \frac{-dU}{dx} \right| = \left| \frac{3-5}{7-5} \right| = 1$$


15. A rod of mass m and length ℓ is attached to two ideal strings. Find tension in left string just after right of string is cut.

(1) $\frac{mg}{2}$ (2) $\frac{mg}{4}$ (3) $\frac{2}{3}mg$ (4) $\frac{mg}{5}$

Ans. (2)


Sol. Before

$$2T = mg$$

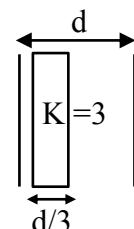
$$T = \frac{mg}{2}$$

After :

$$mg \frac{L}{2} = I_0 \alpha$$

$$mg \frac{L}{2} = \frac{mL^2}{3} \alpha$$

$$\frac{3g}{2L} = \alpha$$


$$mg - T' = ma_t$$

$$T' = mg - m \left(\alpha \frac{L}{2} \right)$$

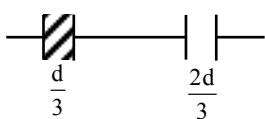
$$T' = mg - m \left(\frac{3g}{4} \right)$$

$$T' = \frac{mg}{4}$$

16. A capacitor of capacitance 'C' is given. Find the capacitance after dielectric is inserted as shown.

(1) $\frac{9}{7}C$ (2) $\frac{3}{7}C$ (3) $\frac{6}{7}C$ (4) $\frac{5}{7}C$

Ans. (2)



Predict your JEE Main 1 2026 percentile

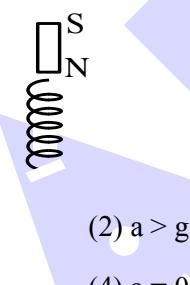
Try ALLEN's FREE Percentile Predictor

Check Now

Sol.

$$C_1 = \frac{3A\epsilon_0 k}{d}, C_2 = \frac{3A\epsilon_0}{2d}$$

$$\frac{1}{C'} = \frac{d}{3A\epsilon_0 k} + \frac{2d}{3A\epsilon_0}$$

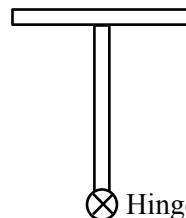

$$= \frac{d}{3A\epsilon_0} \left(\frac{1}{k} + 2 \right)$$

$$C' = \frac{3A\epsilon_0 k}{(1+2k)d} = \frac{3k}{1+2k} \cdot C$$

$$k = 3$$

$$C' = \frac{9}{7}C$$

17. A magnet is dropped inside a coil as shown in figure. Its acceleration as it falls through the coil is 'a'. Choose the correct option.


(1) $a = g$
 (2) $a > g$
 (3) $a < g$
 (4) $a = 0$

Ans. (3)

Sol. The coil will oppose the motion of magnet due to induced current as result of change in magnetic flux.

$$\therefore a < g$$

18. Two rods are joined together as shown. If moment of inertia about Hinge is $\frac{x}{12}m\ell^2$. Find x. (Both rods have mass m and length ℓ)

(1) 10

(2) 12

(3) 13

(4) 17

Ans. (4)

$$\text{Sol. } I_{\text{hinge}} = I_1 + I_2$$

$$= \frac{m\ell^2}{3} + \left(\frac{m\ell^2}{12} + m(\ell)^2 \right)$$

$$= \frac{m\ell^2}{3} + \frac{13m\ell^2}{12}$$

$$= \frac{4m\ell^2 + 13m\ell^2}{12}$$

$$I = \frac{17}{12}m\ell^2$$

$$\frac{x}{12}m\ell^2 = \frac{17}{12}m\ell^2$$

$$x = 17$$

19. Find energy required for a satellite to go from $r = 1.5 R_E$ to $r = 3R_E$. (Given : Mass of satellite is 100 kg. Radius of Earth $R_E = 6 \times 10^6$ m and acceleration due to gravity $g = 10 \text{ m/s}^2$).

(1) 10^9 J (2) 10^{11} J (3) 10^{10} J (4) 10^8 J

Ans. (1)

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

$$\text{Sol. } E = \frac{-GMm}{2r}$$

$$r_1 = 1.5R_E = \frac{3}{2}R_E$$

$$E_1 = \frac{-GMm}{2r_1}$$

$$r_2 = 3R_E$$

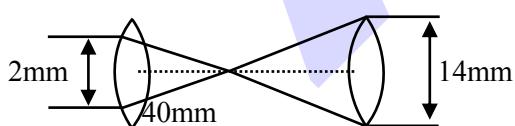
$$E_2 = -\frac{GMm}{2r_2}$$

$$E_1 = \frac{-GMm}{2\left(\frac{3}{2}R_E\right)} = \frac{-GMm}{3R_E}$$

$$E_2 = \frac{-GMm}{2(3R_E)} = \frac{-GMm}{6R_E}$$

$$\text{Energy Req : } E_2 - E_1 = \frac{-GMm}{6R_E} - \left(\frac{-GMm}{3R_E} \right)$$

$$= \frac{GMm}{R_E} \left[\frac{1}{3} - \frac{1}{6} \right] = \left[\frac{GMm}{6R_E} \right]$$


$$= \frac{mgR_E}{6} = 10^9 \text{ J} \quad \left[g = \frac{Gm}{(R_E)^2} \right]$$

20. A collimated beam of light of diameter 2mm is propagating along x-axis. The beam is required to be expanded in a collimated beam of diameter 14mm using a system of two convex lenses. If first lens has focal length 40mm then focal length of 2nd lens is :

(1) 270 mm
(2) 260 mm
(3) 290 mm
(4) 280 mm

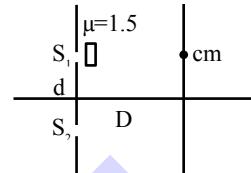
Ans. (4)

Sol.

Similar triangle

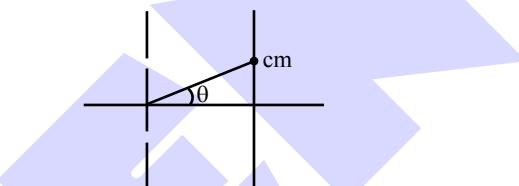
$$\frac{2}{40} = \frac{14}{f}$$

$$f = 280 \text{ mm}$$


SECTION-B

21. In YDSE arrangement

$$d = 0.1 \text{ cm}$$


$$D = 50 \text{ cm}$$

If a thin film placed as in the figure in front of S₁ central maxima forms 0.2 cm above centre. The thickness of film should be (in μm):

Ans. (8)

Sol.

$$\sin \theta = \tan \theta = \frac{0.2}{50} = \frac{1}{250}$$

$$\Delta x_{cm} = 0$$

$$\Delta x_{cm} = (\mu - 1)t - d \sin \theta = 0$$

$$0.5t = 0.1 \times 10^{-2} \times \frac{1}{250}$$

$$= 10^{-3} \times 4 \times 10^{-3} = 4 \times 10^{-6}$$

$$t = 8 \times 10^{-6} = 8 \mu\text{m}$$

22. Initial temperature of 10 moles O₂ is 30°C. Find change in internal energy (in calorie) if final temperature becomes 40°C. Given C_p = $\frac{7\text{cal}}{\text{mole}^\circ\text{C}}$,

$$R = \frac{2\text{cal}}{\text{mole}^\circ\text{C}}$$

Ans. (500)

$$\text{Sol. } \Delta U = nC_v \Delta T = n(C_p - R)(T_f - T_i)$$

$$\Delta U = 10(7 - 2)(40 - 30)$$

$$= 10 \times 5 \times 10$$

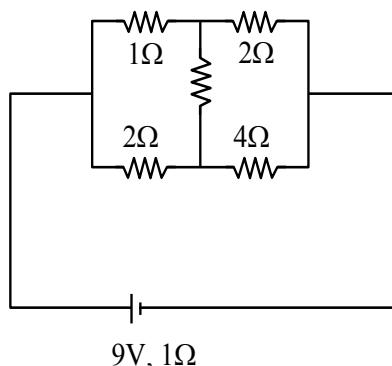
$$\Delta U = 500 \text{ Calorie}$$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

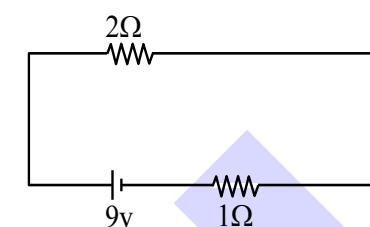
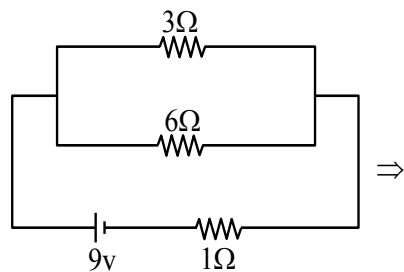
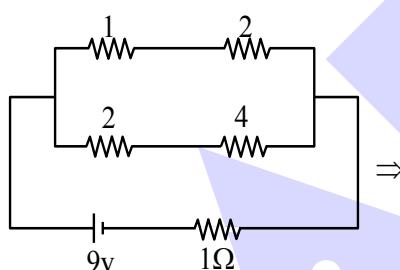
Check Now

23. Compound microscope has $f_o = 2$ cm, $f_e = 4$ cm and tube length $\ell = 32$ cm. For normal adjustment find magnification.


Ans. (100)

Sol. $m \approx \frac{\ell}{f_o} \frac{D}{f_e}$

$$m \approx \frac{32}{2} \times \frac{25}{4}$$




$$m \approx 100$$

24. Find heat (in joule) dissipated in 1 minute in external circuit.

Ans. (1620)

Sol. It is wheatstone bridge

Req. $i = \frac{v}{Req} = \frac{9}{3} = 3$ amp

Heat : $i^2 R t = (9)(3)(60) = 1620$ J

25. There are two springs of spring constant $k_1 = (20 \pm 0.3)$ N/m and $k_2 = (30 \pm 0.2)$ N/m. If they are connected in parallel then percentage error in equivalent spring constant of combination is _____ %.

Ans. (1)

Sol. $\Delta k = \Delta k_1 + \Delta k_2 = 0.5$

$K_{eq} = 50$ N/m

% error = $\frac{0.5}{50} \times 100 = 1$

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

ALLEN

For Class 12th Pass Students

**RISE. REPEAT.
RANK UP IN JEE**

JOIN LEADER COURSE

JEE (Main+Adv.) 2027

26th Mar & 15th Apr

Know more

AIR 1
JEE (Adv.) 2025
Rajit Gupta
CLASSROOM

ALLEN ONLINE

**Think JEE 2027
will be your **best shot?****

Join the **Leader Online Course!**

Win up to

90% scholarship

via **ASAT**

Enrol Now

Get REAL exam practice
for **JEE Main 2026**

with the

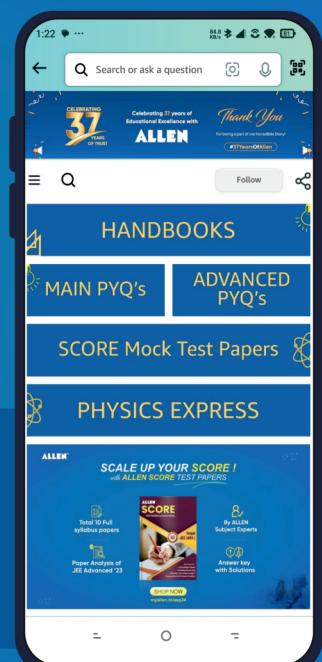
Major Online Test Series!

13 full-syllabus tests

100+ additional mock tests

50,000+ teacher-
recommended Qs. & more

Buy Now


ALLEN

Get The Latest
IIT-JEE Special Books
at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

HANDBOOKS | ADVANCED-QB | SCORE PAPERS
PHYSICS EXPRESS | MAIN PYQ's | Adv. PYQ's

SHOP NOW

Available in
HINDI & ENGLISH