

22/01/2026

Morning

Aakash

Medical | IIT-JEE | Foundations

Corporate Office : AESL, 3rd Floor, Incuspace Campus-2, Plot-13, Sector-18, Udyog Vihar, Gurugram, Haryana-122015

Memory Based Answers & Solutions

Time : 3 hrs.

for

M.M. : 300

JEE (Main)-2026 (Online) Phase-1

(Physics, Chemistry and Mathematics)

Don't guess your JEE Main score.

Calculate it Instantly

with our

**JEE Main Score
Calculator.**

HOW TO GET YOUR SCORES

- Open your response sheet on the JEE Main Site
- Copy the link from the browser's Address bar
- Paste it into the required field in the Calculator

Scan the QR code
to know more.

jee-marks-calculator.aakash.ac.in/

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

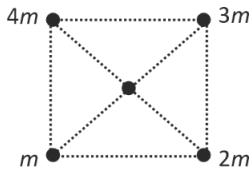
ARUSH
ANAND
AIR 64

one more more...

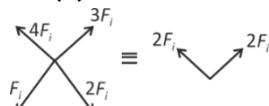
SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100
one more more...

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100
one more more...

HARSSH
A GUPTA
AIR 15
Telangana Topper
100
one more more...



JEE (MAIN)


4. In the given situation force at center on 1 kg mass is F_1 . Now if $4m$ and $3m$ is interchanged the force is F_2 .

Given : $\frac{F_1}{F_2} = \frac{2}{\sqrt{\alpha}}$. Find α .

(1) $\alpha = 5$ (2) $\alpha = 3$
 (3) $\alpha = 7$ (4) $\alpha = 1$

Answer (1)

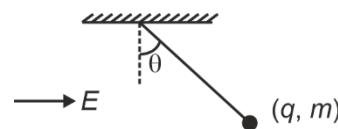
Sol.

$$F_1 = \frac{2\sqrt{2}Gm}{a^2}$$

$$F_2 = \sqrt{10}F_f = \sqrt{10} \frac{Gm^2}{a^2}$$

$$\frac{F_2}{F_1} = \sqrt{\frac{10}{8}} = \frac{\sqrt{5}}{2}$$

5. Match the column

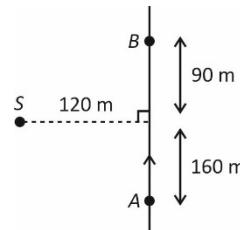

	Column-I		Column-II
(A)	Thermal Conductivity	(P)	$[ML^2T^{-2}K^{-1}]$
(B)	Boltzmann Constant	(Q)	$[M^1L^{-1}T^{-2}]$
(C)	Spring constant	(R)	$[M^1L^1T^{-3}K^{-1}]$
(D)	Surface tension	(S)	$[M^1L^0T^{-2}]$
		(T)	$[M^1L^2T^{-3}K^{-1}]$
		(U)	$[ML^2T^{-2}]$

(1) $A \rightarrow R ; B \rightarrow P ; C \rightarrow S ; D \rightarrow S$
 (2) $A \rightarrow T ; B \rightarrow P ; C \rightarrow U ; D \rightarrow S$
 (3) $A \rightarrow R ; B \rightarrow T ; C \rightarrow Q ; D \rightarrow Q$
 (4) $A \rightarrow T ; B \rightarrow U ; C \rightarrow S ; D \rightarrow Q$

Answer (1)

Sol. Theoretical

6. A simple pendulum with bob (mass m & charge q) is in equilibrium in presence of horizontal electric field E then tension in thread is


(1) $mg + qE$ (2) $\sqrt{m^2g^2 + q^2E^2}$
 (3) $\sqrt{mg + qE}$ (4) $mg + qE \tan\theta$

Answer (2)

Sol. $\vec{T} + \vec{mg} + \vec{qE} = \vec{0}$

$$T = \sqrt{mg^2 + q^2E^2} = \sqrt{m^2g^2 + q^1E^2}$$

7. Detector D moves from A to B and observe the frequencies are differing by 10 Hz. Source is emitting frequency f_0 as shown: Speed of detector is 35 times less than speed of sound. Then f_0 is

(1) 400 Hz (2) 350 Hz
 (3) 250 Hz (4) 150 Hz

Answer (3)

Our Problem Solvers shine bright in **JEE 2025**

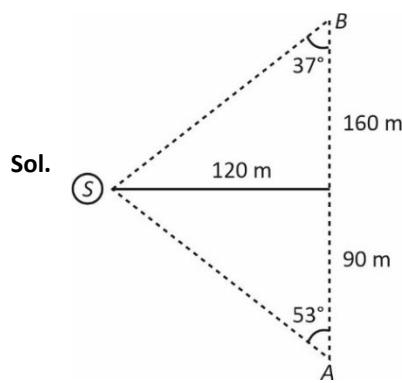
JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

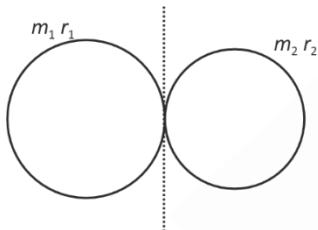
ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall


KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)



$$f_0 \left\{ \frac{C + V \cos 53^\circ}{C} - \frac{C - V \cos 37^\circ}{C} \right\} = 10$$

$$f_0 \left\{ \frac{V}{C} \right\} \left\{ \frac{7}{5} \right\} = 10$$

$$f_0 = \frac{50}{7} \times \frac{C}{V} = 250 \text{ Hz}$$

8. Disk $m_1 = 5 \text{ kg}$ & radius $r_1 = 10 \text{ cm}$ and disk $m_2 = 10 \text{ kg}$ & radius $r_2 = 50 \text{ cm}$ are arranged as shown in figure. Find moment of inertia about an axis through common tangent and parallel to the plane of the disk.

$$(1) \frac{31}{8} \text{ kg m}^2$$

$$(2) \frac{57}{64} \text{ kg m}^2$$

$$(3) \frac{41}{8} \text{ kg m}^2$$

$$(4) \frac{51}{16} \text{ kg m}^2$$

Answer (4)

$$\text{Sol. } \left(\frac{m_1 r_1^2}{4} + m_1 r_1^2 \right) + \left(\frac{m_2 r_2^2}{4} + m_2 r_2^2 \right) = I$$

$$\Rightarrow \left(\frac{1}{100} \times \frac{5}{4} \times 5 \right) + \frac{1}{4} \left(\frac{5}{4} \times 10 \right) = I$$

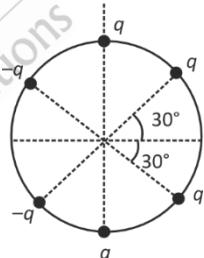
$$\Rightarrow \frac{1}{16} + \frac{50}{16} = \frac{51}{16} \text{ kg m}^2$$

9. In adiabatic process the temperature reduces to $\frac{1}{4}$ th and volume increases to 8 times. Find adiabatic constant of the gas.

$$(1) \frac{3}{4} \quad (2) \frac{5}{7}$$

$$(3) \frac{5}{3} \quad (4) \frac{8}{5}$$

Answer (3)

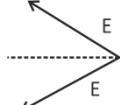

Sol. $TV^{Y-1} = \text{Constant}$

$$\Rightarrow TV^{Y-1} = \frac{T}{4}(8V)^{Y-1}$$

$$\Rightarrow TV^{Y-1} = \frac{T \cdot V^{Y-1}}{4} (8)^{Y-1}$$

$$\Rightarrow (2)^2 = (2)^{3Y-3} \Rightarrow Y = \frac{5}{3}$$

10. Six charges (four $+q$, two $-q$) are present at circle of radius r and centred at origin as shown. Electric field at origin is



$$(1) \frac{\sqrt{3}q}{4\pi\epsilon_0 r^2} \hat{i} \quad (2) \frac{\sqrt{3}q}{4\pi\epsilon_0 r^2} (-\hat{i})$$

$$(3) \frac{\sqrt{3}q}{2\pi\epsilon_0 r^2} (-\hat{i}) \quad (4) \frac{\sqrt{3}q}{\pi\epsilon_0 r^2} (\hat{i})$$

Answer (3)

Sol.

$$E = \frac{2kq}{r^2} \Rightarrow E_{\text{net}} = E\sqrt{3}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

11. An α -particle with KE 7.9 MeV is projected towards a stationary target nucleus of $Z = 79$. Find the distance of closest approach.

(1) 1.44×10^{-14} (2) 2.88×10^{-14}
 (3) 1.44×10^{-15} (4) 2.88×10^{-15}

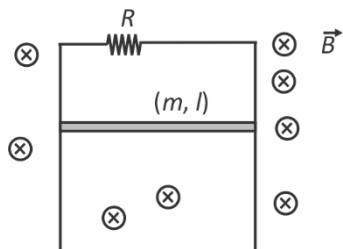
Answer (2)

Sol. $KE = \frac{KZe \times 2e}{d} = 7.9 \times 10^6$

$$d = \frac{9 \times 10^9 \times 2 \times 1.6 \times 10^{-19}}{10^5} = 2.88 \times 10^{-14}$$

12. A planet 'A' having density ρ and radius R has escape velocity = 10 km/sec. Find the escape velocity of a planet B having density and radius both 10% that of planet A.

(1) $\frac{1}{\sqrt{10}}$ (2) $\frac{1}{\sqrt{20}}$
 (3) $\frac{1}{\sqrt{30}}$ (4) $\frac{1}{\sqrt{50}}$


Answer (1)

Sol. $v_e = \sqrt{\frac{Gm \times 2}{R}} = \sqrt{G\rho \frac{8}{3} \pi R^2}$

$$\frac{v_A}{v_B} = \sqrt{\frac{\rho_A}{\rho_B} \left(\frac{R_A}{R_B} \right)} = \sqrt{10} \times 10$$

$$v_B = \frac{v_A}{10\sqrt{10}} = \frac{1}{\sqrt{10}}$$

13. A conducting rod of mass m and length l is moving on a infinite pair of conducting rails as shown. Conducting rails are connected to a resistance R at one end. Motion is in vertical plane and horizontal magnetic field in the region is B . Find terminal speed of rod.

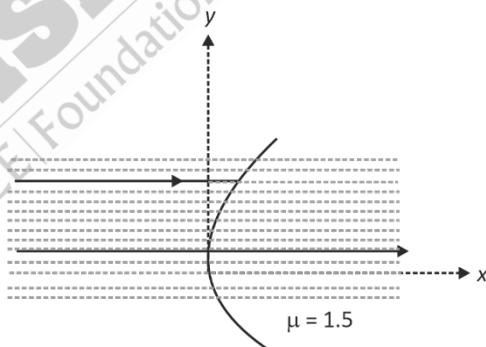
(1) $v_0 = \frac{3mgR}{2B^2l^2}$ (2) $v_0 = \frac{mgR}{2B^2l^2}$
 (3) $v_0 = \frac{mgR}{B^2l^2}$ (4) $v_0 = \frac{2mgR}{B^2l^2}$

Answer (3)

Sol. Let v_0 is the terminal speed then power dissipated is

$$\left(\frac{V_0 BI}{R} \right)^2 \cdot R = \frac{V_0^2 B^2 l^2}{R}$$

and power delivered gravity is mgv_0


$$\text{So, } mgv_0 = \frac{B^2 l^2}{R} \cdot v_0^2$$

$$\Rightarrow \frac{mgR}{B^2 l^2} = v_0$$

14. A ray parallel to x axis (principal axis of curved surface).

The x co-ordinate where ray cuts x-axis (in m) is :

(The radius of curvature is 50 cm)

(1) 1.5 (2) 0.5
 (3) 1 (4) 2

Answer (1)

Sol. $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R} \Rightarrow \frac{1.5}{v} = \frac{0.5}{0.5}$

$$V = 1.5$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

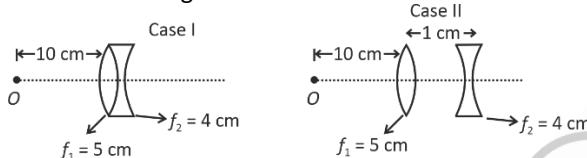
HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

15. A sinusoidal EMW is given by $\vec{E} = 20 \sin\left(\frac{2}{300}x - 10^6 t\right)$ propagating in a non-magnetic material. Dielectric constant of material is

(1) 9×10^4 (2) 3×10^2
 (3) 4 (4) 2

Answer (3)


Sol. $K = \frac{\omega}{V} \Rightarrow \frac{2}{300} = \frac{10^6}{V}$

$$V = \frac{3 \times 10^8}{2}$$

$$\mu = \frac{C}{V} \Rightarrow \mu = 2$$

$$\frac{C}{V} = \frac{\mu \epsilon}{\mu_0 \epsilon_0} \Rightarrow \sqrt{\mu} = 2$$

16. Combination of lenses are arranged in case I and case II as shown in figure.

Magnification in two cases are m_1 and m_2 . Find $\left|\frac{m_1}{m_2}\right|$.

(1) $\frac{5}{6}$ (2) $\frac{4}{3}$
 (3) $\frac{3}{4}$ (4) $\frac{6}{5}$

Answer (1)

Sol. For Case I

$$\frac{1}{f_a} = \frac{1}{5} - \frac{1}{4} = \frac{-1}{20}$$

$$\text{So } \frac{1}{v} + \frac{1}{10} = -\frac{1}{20} \Rightarrow \frac{1}{v} = -\frac{1}{20} - \frac{1}{10} = -\frac{3}{20}$$

$$\text{So } |m_1| = \frac{20}{3 \times 10} = \frac{2}{3}$$

For case II

$$\text{For 1st lens } \frac{1}{v_1} + \frac{1}{f_0} = \frac{1}{5}$$

$$\Rightarrow v_1 = 10 \text{ so, } m'_2 = \frac{10}{-10} = -1$$

So 2nd lens

$$\frac{1}{v_2} - \frac{1}{9} = -\frac{1}{4} \Rightarrow \frac{1}{v_2} = \frac{1}{9} - \frac{1}{4} = \frac{-5}{36}$$

$$\text{So } m''_2 = \left(\frac{36}{-5}\right) \frac{1}{9} = -\frac{4}{5}$$

$$\text{So } m_2 = m'_2 \cdot m''_2 = \left(\frac{4}{5}\right) \times (1) = \frac{4}{5}$$

$$\text{So } \left|\frac{m_1}{m_2}\right| = \frac{2 \times 5}{3 \times 4} = \frac{5}{6}$$

17. Match the column-I with the correct numerical values of energy/heat in column-II (R is universal gas constant)

	Column-I		Column-II
(A)	1 mole of monoatomic ideal gas undergoes polytopic process $PV^{-1/2}$ with $\Delta T = 320$ K find ΔU	(P)	$650 R$
(B)	Find heat supplied to 2 moles of gas having heat capacity as $\frac{5}{2}R$ and $\Delta T = 130$ K	(Q)	$800 R$
(C)	Find the ΔU for 1 mole diatomic gas for $\Delta T = 230$ K	(R)	$480 R$

(1) $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$

(2) $A \rightarrow P$; $B \rightarrow R$; $C \rightarrow Q$

(3) $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow P$

(4) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow R$

Answer (1)

Sol. ΔU for any process $nC_V\Delta T$

$$(A) \Delta U = 1 \times \frac{3R}{2} \times 320 = 480 R$$

$$(B) \Delta Q = nC_{\text{process}}\Delta T = 2 \times \frac{5R}{2} \times 130 = 650 R$$

$$(C) \Delta U = 1 \times \frac{5}{2}R \times 320 = 800 R$$

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

18. Statement-I : Fluid exerts pressure on the surface of a solid in contact with it.
 Statement-II : The excess potential energy of molecules at the surface of a liquid leads to surface tension.
 (1) Both are true and statement-II is correct explanation of Statement-I
 (2) Both are true but statement-II is not correct explanation of Statement-I
 (3) Statement-I is true but Statement-II is false
 (4) Statement-II is true but statement-I is false

Answer (2)**Sol.** Theoretical

19. For an object revolving around a planet of mass M and radius R_0 at a distance r from the center of the planet. If area velocity of the object is $10 \text{ km}^2/\text{sec}$. Now if density of the planet increases by $+10\%$ and radius of planet increases by $+10\%$ then find new area velocity at same orbital radius.

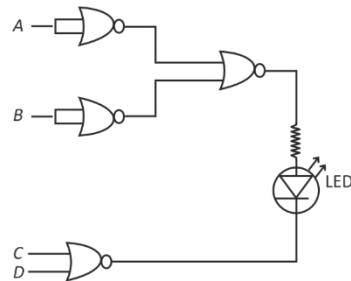
(1) $12.1 \text{ km}^2/\text{sec}$ (2) $10 \text{ km}^2/\text{sec}$
 (3) $15.5 \text{ km}^2/\text{sec}$ (4) $8.5 \text{ km}^2/\text{sec}$

Answer (1)

$$\text{Sol. } T^2 = \frac{4\pi^2 r^3}{GM}$$

$$\text{So } V_{\text{Area}}^2 = \frac{\pi r^2 \cdot \pi r^2 GM}{4\pi^2 r^3} = \frac{GMr}{4}$$

$$\text{So } V_{\text{Area}}^2 = \frac{G}{4} \cdot r \cdot \frac{4}{3} \pi R^3 \rho = \frac{\pi}{3} R^3 \rho Gr$$


Since r is constant so

$$\frac{V_{2(\text{Area})}^2}{V_{1(\text{Area})}^2} = \frac{\frac{110\rho}{100} \left(\frac{11}{10}\right)^3 \cdot R^3}{\rho R^3}$$

$$\Rightarrow V_{2(\text{Area})}^2 = \left(\frac{11}{10}\right)^4 \times 100$$

$$\Rightarrow V_{2(\text{Area})} = 12.1 \text{ km}^2/\text{sec}$$

20. In the given logic circuit shown in the figure, inputs A, B, C , and D are applied as shown. An LED is connected at the output. In which of the following combinations will the LED glow.

(1) $A = 1, B = 1, C = 0, D = 0$
 (2) $A = 1, B = 0, C = 0, D = 0$
 (3) $A = 0, B = 1, C = 1, D = 0$
 (4) $A = 1, B = 1, C = 1, D = 1$

Answer (4)**Sol.** $\overline{A+B}$ $\overline{C+D}$ are two terminals $AB \overline{C+D}$ LED glows when forward bias**SECTION - B**

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21.
 22.
 23.
 24.
 25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

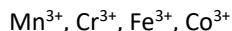
RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

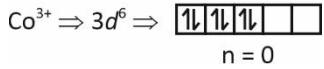
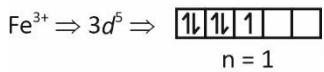
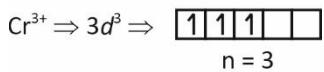
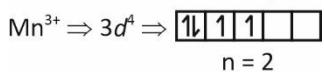

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Consider the given central metal ions of low spin complex and choose the correct increasing order of unpaired electrons

(1) $\text{Co}^{3+} < \text{Fe}^{3+} < \text{Mn}^{3+} < \text{Cr}^{3+}$
 (2) $\text{Co}^{3+} < \text{Mn}^{3+} < \text{Fe}^{3+} < \text{Cr}^{3+}$
 (3) $\text{Cr}^{3+} < \text{Mn}^{3+} < \text{Cr}^{3+} < \text{Fe}^{3+}$
 (4) $\text{Cr}^{3+} < \text{Mn}^{3+} < \text{Co}^{3+} < \text{Fe}^{3+}$

Answer (1)

Sol.

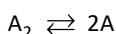
Low spin

2. Match the following and choose the correct option.

List-I	List-II
(a) $[\text{Ag}(\text{NH}_3)_2]^+$	(i) Fehling's solution
(b) Zn-Hg/HCl	(ii) Clemmensen reduction
(c) $\text{NH}_2 - \text{NH}_2/\text{KOH}$	(iii) Tollens reagent
(d) $\text{Cu}^{2+}/\text{OH}^-$	(iv) Wolff-Kishner reduction

(1) a(i), b(ii), c(iii), d(iv)

(2) a(iv), b(iii), c(ii), d(i)


(3) a(iii), b(ii), c(iv), d(i)

(4) a(i), b(ii), c(iv), d(iii)

Answer (3)

Sol. a(iii), b(ii), c(iv), d(i)

3. For the reaction given below at 25°C

Find $\ln K_p$

$$\text{Given } (\Delta G_f^{\circ})_A = -50.384 \text{ kJ/mol}$$

$$(\Delta G_f^{\circ})_{\text{A}_2} = -100 \text{ kJ/mol}$$

(1) 0.43

(2) 0.23

(3) 0.31

(4) 0.53

Answer (3)

Sol. $\text{A}_2 \rightarrow 2\text{A}$

$$(\Delta G_f^{\circ})_{\text{rxn}} = -2 \times 50.384 + 100$$

$$= -0.768 \text{ kJ}$$

$$\Delta G^{\circ} = -RT \ln K_p$$

$$-\frac{\Delta G^{\circ}}{8.3 \times 298} = \ln K_p$$

$$\frac{0.768 \times 1000}{8.3 \times 298} = \ln K_p = 0.31$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

Gold Medalist

SHREYAS
LOHIYA
AIR 6

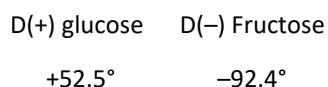
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7

Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15

Telangana Topper
100th in Overall


4. **Statement-I** : Sucrose is dextrorotary and upon hydrolysis it becomes laevo-rotatory.

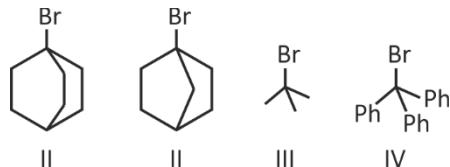
Statement-II : Sucrose on hydrolysis gives glucose and fructose such that the laevo-rotation of glucose is more than dextrorotation of fructose.

- Both Statement-I and Statement-II are correct
- Both Statement-I and Statement-II are incorrect
- Statement-I is correct, Statement-II is incorrect
- Statement-II is correct, Statement-I is incorrect

Answer (3)

Sol. Sucrose \rightleftharpoons Glucose + Fructose

5. Which of the following is the correct order of the reactivity of given nucleophiles when treated with CH_3Br in methanol?



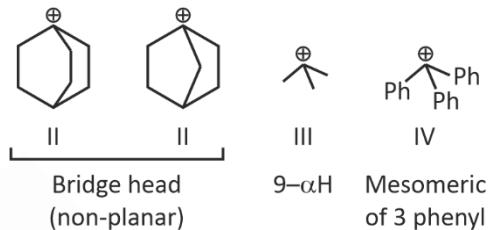
- $\text{I}^- > \text{C}_2\text{H}_5\text{O}^- > \text{C}_6\text{H}_5\text{O}^- > \text{F}^-$
- $\text{I}^- > \text{F}^- > \text{C}_2\text{H}_5\text{O}^- > \text{C}_6\text{H}_5\text{O}^-$
- $\text{I}^- > \text{C}_2\text{H}_5\text{O}^- > \text{F}^- > \text{C}_6\text{H}_5\text{O}^-$
- $\text{C}_6\text{H}_5\text{O}^- > \text{F}^- > \text{I}^- > \text{C}_2\text{H}_5\text{O}^-$

Answer (1)

Sol. Nucleophilicity order of : $\text{I}^- > \text{C}_2\text{H}_5\text{O}^- > \text{C}_6\text{H}_5\text{O}^- > \text{F}^-$
Greater the size of anion, greater polarisation, greater nucleophilicity.

6. Reactivity of following on the basis of $\text{S}_{\text{N}}1$ mechanism.

- $\text{IV} > \text{III} > \text{I} > \text{II}$


- $\text{II} > \text{IV} > \text{II} > \text{I}$

- $\text{III} > \text{IV} > \text{I} > \text{II}$

- $\text{IV} > \text{III} > \text{II} > \text{I}$

Answer (1)

Sol. For $\text{S}_{\text{N}}1$, more stable carbocation means higher reactivity

$$\text{IV} > \text{III} > \text{I} > \text{II}$$

II is less stable than I due to higher strain.

7. Given below are two statements.

Statement I : HX bond length is higher in HCl than HF.

Statement II : The lowest boiling point in hydride of group 15 element is having covalency 4.

- Both statement I and statement II is correct
- Both statement I and statement II is incorrect
- Statement I is correct but statement II is incorrect
- Statement I is incorrect but statement II is correct

Answer (3)

Sol. Bond length : $\text{HCl} > \text{HF}$
127.4 pm 91.7 pm

$$\text{B.P.} = \text{BiH}_3 > \text{SbH}_3 > \text{NH}_3 > \text{AsH}_3 > \text{PH}_3$$

290 K 254.6 K 238.5 K 210.6 K 185.5 K

Our Problem *Solvers* shine bright in **JEE 2025**

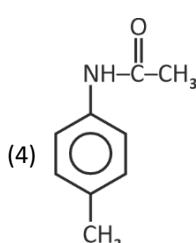
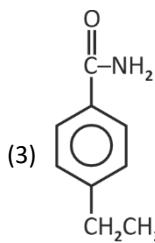
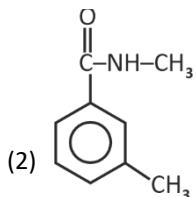
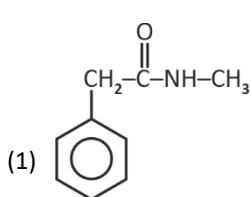
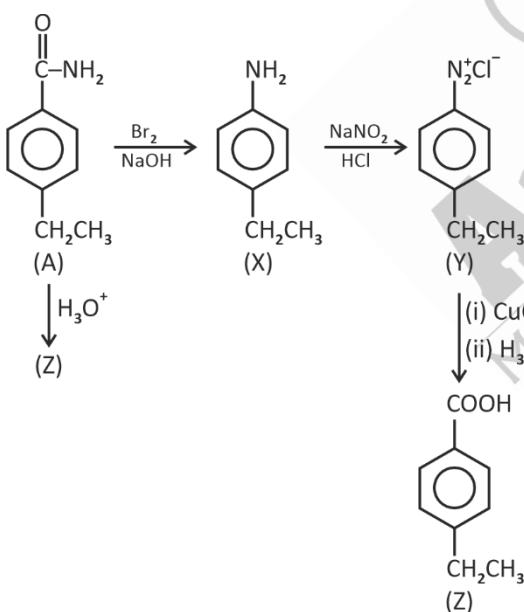
JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

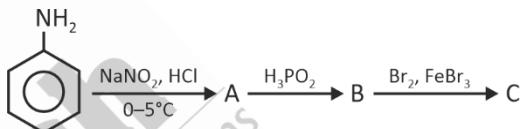
SHREYAS
LOHIYA
AIR 6






KUSHAGRA
BAINGAHA
AIR 7

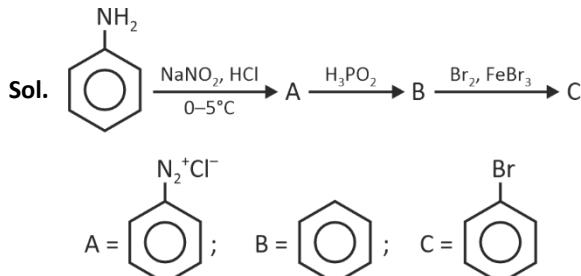
HARSSH
A GUPTA
AIR 15

8. A compound 'A' with molecular formula $C_9H_{11}NO$ reacts with $Br_2/NaOH$ to give (X). (X) on reaction with $NaNO_2$ in dil. HCl gives compounds (Y). When (Y) is treated with $CuCN$, followed by hydrolysis gives (Z). The compound (A) on hydrolysis also gives compound (Z). Identify compound (A)

Answer (3)
Sol.


9. Which of the following statement is correct regarding the nature and directive influence of $-NO_2$ group in nitrobenzene.

- It is an activating group and ortho/para director
- It is a deactivating group and ortho/para director
- It is a deactivating group and meta director
- It is an activating group and meta director


Answer (3)

Sol. $-NO_2$ group is a deactivating group and meta director.

10. Consider the following sequence of reaction and identify A, B and C respectively.

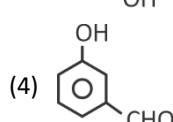
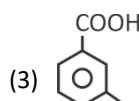
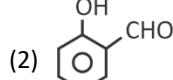
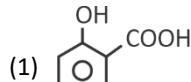
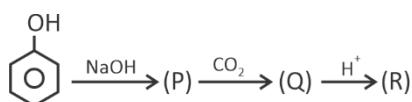
- $C_6H_5OH, C_6H_6, C_6H_4Br_2$
- $C_6H_5N_2^+Cl^-, C_6H_6, C_6H_5Br$
- $C_6H_5NO_2, C_6H_5OH, C_6H_5Br$
- $C_6H_5Cl, C_6H_5OH, C_6H_6$

Answer (2)

Our Problem *Solvers* shine bright in **JEE 2025**

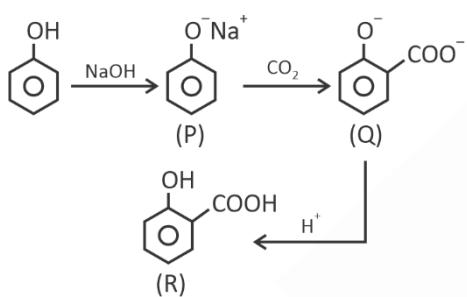
JEE (Advanced)
**ADVAY
MAYANK**
AIR 36

**RUJUL
GARG**
AIR 41






**ARUSH
ANAND**
AIR 64

**SHREYAS
LOHIYA**
AIR 6
Uttar Pradesh Topper
100th in Overall

**KUSHAGRA
BAINGAHA**
AIR 7
Uttar Pradesh Topper
100th in Overall


**HARSSH
A GUPTA**
AIR 15
Telangana Topper
100th in Overall

11. In the following reaction sequence, identify compound (R).

Answer (1)

Sol.

12. Given below are two statements

Statement-I : K_H is constant with change in concentration of gas till solution is dilute at given temperature.

Statement-II : According to Henry's Law, partial pressure of gas in vapour phase is inversely proportional to mole fraction of gas in solution.

(1) Both Statement-I and Statement-II are correct
 (2) Both Statement-I and Statement-II are incorrect
 (3) Statement-I is correct, Statement-II is incorrect
 (4) Statement-I is incorrect and Statement-II is correct

Answer (3)

Sol. According to Henry's Law

$$P_{\text{gas}} \propto X_{\text{gas}}$$

Statement-II is incorrect

K_H is dependent on temperature

Statement-I is correct

13. Consider a first order reaction:

3 different solutions are taken and the rate of reaction of

Solution 1 : 100mL 10M 'A' $\rightarrow r_1$

Solution 2 : 200mL 10M 'A' $\rightarrow r_2$

Solution 3 : 100mL 10M 'A' + 100mL water $\rightarrow r_3$

The correct order of the rates of reactions is,

(1) $r_1 = r_2 = r_3$
 (2) $r_1 = r_2 < r_3$
 (3) $r_1 = r_2 > r_3$
 (4) $r_1 < r_2 = r_3$

Answer (3)

Sol. For a first order reaction

$$\frac{-dA}{dt} = k[A]$$

As $[A]$ decreases rate of reaction decreases

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

14. Bohr's radius of H-atom is 2.12×10^{-10} m. Calculate the energy of electron at this level.

(1) -5.44×10^{-19} J
 (2) -2.176×10^{-18} J
 (3) -54.4×10^{-19} J
 (4) -2.3×10^{-19} J

Answer (1)

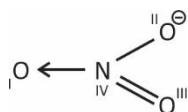
Sol. $r_n = a_0 \frac{n^2}{Z}$

$$2.12 \times 10^{-10} = 0.529 \times 10^{-10} \frac{n^2}{1}$$

$$n^2 = 4$$

$$n = 2$$

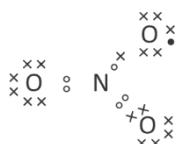
$$E_n = -13.6 \frac{Z^2}{n^2} \text{ eV}$$


$$E_n = -13.6 \frac{1}{2^2} \text{ eV}$$

$$= -3.4 \text{ eV}$$

$$= -3.4 \times 1.6 \times 10^{-19} \text{ J}$$

$$= -5.44 \times 10^{-19} \text{ J}$$


15. Find the formal charge of O^{I} , O^{II} , O^{III} and N^{IV} respectively

(1) 0, +1, -1, +2
 (2) -1, -1, 0, +1
 (3) -1, 0, +2, +1
 (4) +1, -1, 0, -1

Answer (2)

Sol. Formal charge = Valence e^- – Non-bonding e^- – $\frac{1}{2}$ (Bonding e^-)

$$\text{F.C. on O(I)} \Rightarrow 6 - 6 - \frac{1}{2}(2) = -1$$

$$\text{F.C. on O(II)} \Rightarrow 6 - 6 - \frac{1}{2}(2) = -1$$

$$\text{F.C. on O(III)} \Rightarrow 6 - 4 - \frac{1}{2}(4) = 0$$

$$\text{F.C. on N(IV)} \Rightarrow 5 - 0 - \frac{1}{2}(8) = +1$$

16. For , the incorrect statement is,

'P'

(1) 'P' is less reactive than benzyl chloride towards nucleophilic substitution reaction.
 (2) In 'P', C-Cl bond has partial double bond character
 (3) 'Cl' is an ortho-para directing group towards electrophilic aromatic substitution
 (4) 'P' can undergo nucleophilic substitution reaction at normal conditions

Answer (4)

Sol. Chlorobenzene (P) does not undergo S_N reaction under normal conditions.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6

KUSHAGRA
BAINGAHA
AIR 7

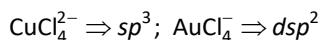
HARSSH
A GUPTA
AIR 15

17. Which of the following statement is correct regarding element having atomic number 79.

- It's first ionisation enthalpy is maximum in its group
- It's first ionisation enthalpy is minimum in its group
- It belongs to group 10 of periodic table
- It belongs to 5th period of periodic table

Answer (1)

Sol.	IE ₁ (kJ/mol)	Cu	Ag	Au
		745	730	890


Au belongs to Group-11 and it is a 6th period element.

18. An element from 1st transition series and another element of 3rd transition series (same group) do not liberate H₂ gas from dilute acids like HCl. Both form halides. The hybridisation state of metal ion halide respectively are

- Both sp^3
- Both dsp^2
- sp^3 and dsp^2
- dsp^2 and sp^3

Answer (3)

Sol. Cu and Au do not liberate H₂ gas with dilute acid.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Sodium extract of organic compound of 0.1 g is treated with chlorine water and CCl₄ which dissolves in organic solvent to produce a violet colour. Upon treatment with AgNO₃ a yellow ppt. of 0.12 g is produced. Calculate the percentage of halide in organic compound.

Answer (65)

Sol. Layer test confirms the presence of iodine in the organic compound on treatment with AgNO₃, AgI precipitate is formed.

$$n_{\text{AgI}} = \frac{0.12}{235} = 5.1 \times 10^{-4} \text{ mol}$$

$$\text{mass of I} = 5.1 \times 10^{-4} \times 127$$

$$= 0.0648 \text{ g}$$

$$\% \text{ of I} = \frac{0.0648}{0.1} \times 100 = 64.77 \approx 65\%$$

22.

23.

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

Gold Medalist 2024

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

Sol. $\tan^{-1} \left[\frac{4x+6x}{1-24x^2} \right] = \frac{\pi}{6}$

$$\frac{10x}{1-24x^2} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow 24x^2 + 10\sqrt{3}x - 1 = 0$$

$$x = \frac{-10\sqrt{3} \pm \sqrt{300+96}}{48}$$

$$= \frac{-10\sqrt{3} \pm \sqrt{396}}{48}$$

$$= \frac{-10\sqrt{3} \pm 2\sqrt{99}}{48}$$

$$= \frac{-5\sqrt{3} \pm \sqrt{99}}{24}$$

$$\frac{-5\sqrt{3} - \sqrt{99}}{24} \text{ (rejected) as } x \in \left[-\frac{1}{2\sqrt{6}}, \frac{1}{2\sqrt{6}} \right]$$

$$\Rightarrow x = \frac{-5\sqrt{3} + \sqrt{99}}{24}$$

7. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{[x]+4} dx$ is

Where $[.]$ denotes greatest integer function.

(1) $\frac{\pi}{20} + \frac{7}{20}$

(2) $\frac{7\pi}{20} - \frac{7}{60}$

(3) $\frac{7\pi}{20} - \frac{1}{60}$

(4) $\frac{7\pi}{20} + \frac{1}{60}$

Answer (2)

Sol. $\int_{-\frac{\pi}{2}}^{-1} \frac{1}{2} dx + \int_{-1}^0 \frac{1}{3} dx + \int_{-0}^1 \frac{1}{4} dx + \int_{1}^{\frac{\pi}{2}} \frac{1}{5} dx$

$$\left[\frac{1}{2}x \right]_{-\frac{\pi}{2}}^{-1} + \left[\frac{1}{3}x \right]_0^0 + \left[\frac{1}{4}x \right]_0^1 + \left[\frac{1}{5}x \right]_1^{\frac{\pi}{2}}$$

$$\frac{1}{2} \left[-1 + \frac{\pi}{2} \right] + \frac{1}{2} (0 - (-1)) + \frac{1}{4} (1 - 0) + \frac{1}{5} \left(\frac{\pi}{2} - 1 \right)$$

$$- \frac{1}{2} + \frac{\pi}{4} + \frac{1}{3} + \frac{1}{4} + \frac{\pi}{10} - \frac{1}{5}$$

$$\frac{7\pi}{20} - \frac{7}{60}$$

8. If $\frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \sqrt{5}\beta}{2}$. Then, the value of $(\alpha + \beta)$ is

(1) 3

(2) 2

(3) 4

(4) 1

Answer (3)

Sol. $\frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\cos(48^\circ + 12^\circ)\cos(48^\circ - 12^\circ)}{\sin(24^\circ + 6^\circ)\sin(24^\circ - 6^\circ)}$

$$= \frac{\cos 60^\circ \cos 36^\circ}{\sin 30^\circ \sin 18^\circ} = \frac{\cos 36^\circ}{\sin 18^\circ}$$

$$= \frac{\frac{\sqrt{5}+1}{4}}{\frac{\sqrt{5}-1}{4}} = \frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}$$

$$= \frac{5+1+2\sqrt{5}}{4} = \frac{6+2\sqrt{5}}{4}$$

$$= \frac{3+\sqrt{5}}{2}$$

$\alpha = 3, \beta = 1$

$\alpha + \beta = 4$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100
out of 100
Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100
out of 100
Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100
out of 100
Overall

9. If $\int (\cos x)^{-5/2} (\sin x)^{-11/2} dx$

$$= \frac{p_1}{q_1} (\cot x)^{9/2} + \frac{p_2}{q_2} (\cot x)^{5/2} + \frac{p_3}{q_3} (\cot x)^{1/2} - \frac{p_4}{q_4} (\cot x)^{-3/2} + c$$

(where c is constant of integration), then value of $\frac{15p_1p_2p_3p_4}{q_1q_2q_3q_4}$ is

(1) 14
 (2) 16
 (3) 10
 (4) 9

Answer (2)

Sol. $\int (\cos x)^{-5/2} (\sin x)^{-11/2} dx$

$$= \int \frac{1}{(\cos x)^{5/2} (\sin x)^{-1/2}} dx$$

$$= \int \frac{1}{(\cot x)^{5/2} \sin^8 x} dx$$

$$= \int \frac{\operatorname{cosec}^2 x}{(\sin^6 x)(\cot x)^{5/2}} dx$$

= Let $\cot x = t \Rightarrow -\operatorname{cosec}^2 dx = dt$

$$= 1 + \cot^2 x = \operatorname{cosec}^2 x = (1 + t^2)$$

$$\Rightarrow \int \frac{(1+t^2)^3 (-dt)}{t^{5/2}}$$

$$\Rightarrow \int \frac{(t^6 + 3t^4 + 3t^2 + 1)(-dt)}{t^{5/2}}$$

$$\Rightarrow - \int (t^{7/2} + 3t^{3/2} + 3t^{-1/2} + t^{-5/2}) dt$$

$$\Rightarrow - \frac{t^{9/2}}{\frac{9}{2}} - \frac{3t^{5/2}}{\frac{5}{2}} - \frac{3t^{1/2}}{\frac{1}{2}} - \frac{t^{-3/2}}{\frac{-3}{2}} + c$$

$$= -\frac{2}{9} \cot x^{9/2} - \frac{9}{5} \cot x^{5/2} - 6 \cot x^{1/2} + \frac{2}{3} (\cot x)^{-3/2} + c$$

$$\Rightarrow 15 \left(-\frac{2}{9} \times -\frac{6}{5} \times 6 \times \frac{2}{3} \right) = 16$$

10. The value(s) of α for which the line $\alpha x + 2y = 1$ never touches the hyperbola $\frac{x^2}{9} - \frac{y^2}{1} = 1$ is/are

$$(1) R - \left\{ -\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2} \right\}$$

$$(2) R - \left\{ -\sqrt{5}, \sqrt{5} \right\}$$

$$(3) R - \left\{ -\frac{\sqrt{5}}{3}, \frac{\sqrt{5}}{3} \right\}$$

$$(4) R$$

Answer (3)

Sol. $\frac{x^2}{9} - \frac{y^2}{1} = 1$

Line $\alpha x + 2y = 1$

$$T: y = mx \pm \sqrt{9m^2 - 1}$$

$$T: 2y = -\alpha x - 1$$

$$\frac{1}{2} = -\frac{m}{\alpha} = \frac{\sqrt{9m^2 - 1}}{-1}$$

$$\frac{1}{4} = 9m^2 - 1$$

$$\frac{5}{36} = m^2 \Rightarrow m = \pm \frac{\sqrt{5}}{6}$$

$$-2m = \alpha$$

$$\boxed{\alpha = \pm \frac{\sqrt{5}}{3}}$$

For $\alpha = \pm \frac{\sqrt{5}}{3}$, the $\alpha x + 2y = 1$ will become tangent.

∴ The value of α for which line will not become tangent

$$\text{is } R - \left\{ \pm \frac{\sqrt{5}}{3} \right\}.$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

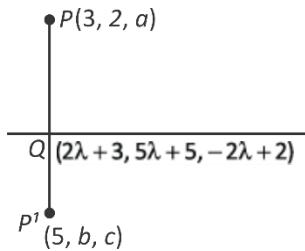
RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100
100
Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100
100
Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100
100
Overall



11. If the image of the point $P(3, 2, a)$ reflected about the line $\frac{x-3}{2} = \frac{y-5}{5} = \frac{z-2}{-2}$ is $(5, b, c)$. Then the value of $a^2 + b^2 + c^2$ is

(1) $\frac{4849}{8}$ (2) $\frac{4245}{4}$
 (3) $\frac{3947}{8}$ (4) $\frac{2429}{4}$

Answer (1)

Sol.

Q is the mid-point of PP'

$$\therefore \frac{5+3}{2} = 2\lambda + 3 \Rightarrow \lambda = \frac{1}{2}$$

$$\frac{b+2}{2} = 5\lambda + 5 = \frac{5}{2} + 5 = \frac{15}{2}$$

$$\Rightarrow b = 3$$

$$\frac{a+c}{2} = -2\lambda + 2 = 1$$

$$\Rightarrow a + c = 2 \quad \dots(i)$$

Now,

$$2(5-3) + 5(b-2) + (-2)(c-a) = 0$$

$$\Rightarrow c - a = \frac{59}{2} \quad \dots(ii)$$

From (i) & (ii)

$$c = \frac{63}{4}, a = \frac{-55}{4}$$

$$\therefore a^2 + b^2 + c^2 = \frac{4849}{8}$$

12. If probability distribution is given by

x	0	1	2		3	4	5	6	7
$P(x)$	k	$2k^2$	$6k^2$		$2k^2 + k$	$4k$	k	k	k

Then, the value of $P(3 < x \leq 6)$ is

(1) 0.6 (2) 0.8
 (3) 0.4 (4) 0.2

Answer (1)

$$\text{Sol. } 10k^2 + 9k = 1$$

$$10k^2 + 9k - 1 = 0$$

$$10k^2 + 10k - k - 1 = 0$$

$$10k(k+1) - 1(k+1) = 0$$

$$k = \frac{1}{10}, \quad \boxed{k = -1} \rightarrow \text{Not possible}$$

$$\Rightarrow \boxed{k = \frac{1}{10}}$$

$$P(3 < x \leq 6) = P(x = 4) + P(x = 5) + P(x = 6)$$

$$= \frac{4}{10} + \frac{1}{10} + \frac{1}{10}$$

$$= \frac{6}{10} = \frac{3}{5}$$

$$= 0.6$$

13.

14.

15.

16.

17.

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. If $A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$, then the value of $|A^{2025} - 3A^{2024} + A^{2023}|$ is

Answer (16)

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

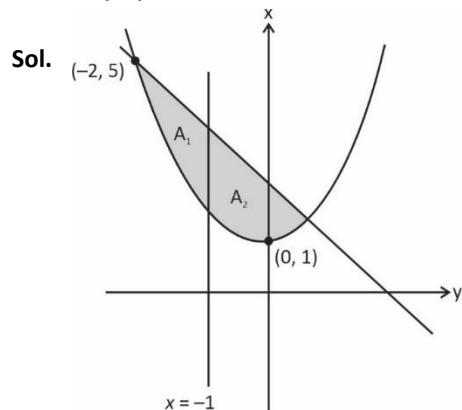
Sol. $|A|^{2023} |A^2 - 3A + I|$

$|A| = 1$

Now,

$|A^2 - 3A + I|$

$\Rightarrow \begin{bmatrix} 13 & 21 \\ 21 & 34 \end{bmatrix} - 3 \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$


$\Rightarrow \begin{bmatrix} 8 & 12 \\ 12 & 20 \end{bmatrix}$

$= 8 \times 20 - 12 \times 12$

$= 16$

22. If the area of the region $\{(x, y) : x^2 + 1 \leq y \leq 3 - x\}$ is divided by the line $x = -1$ in the ratio $m : n$ (where m and n are coprime natural numbers). Then, the value of $m + n$ is

Answer (27)

$y = 3 - x$

$y = x^2 + 1$

$3 - x = x^2 + 1$

$x^2 + x - 2 = 0$

$(x + 2)(x - 1) = 0$

$\Rightarrow x = -2, 1$

$A_1 = \int_{-2}^{-1} ((3-x) - (x^2 + 1)) dx$

$A_1 = \int_{-2}^{-1} (3 - x - x^2 - 1) dx$

$A_1 = \frac{7}{6}$

$A_2 = \int_{-1}^1 ((3-x) - (x^2 + 1)) dx$

$A_2 = \frac{10}{3} \Rightarrow A_1 : A_2 = \frac{\frac{7}{6}}{\frac{10}{3}} = \frac{7}{20}$

$\Rightarrow m + n = 27$

23. The number of solution(s) of equation $x|x + 4| + 3|x + 2| + 3 = 0$ is/are equal to

Answer (3.00)

Sol. If $x \geq -2$

$\text{Then } x(x + 4) + 3(x + 2) + 3 = x^2 + 7x + 9$

$\Rightarrow x = \frac{-7 \pm \sqrt{49 - 36}}{2}$

$= \frac{-7 \pm \sqrt{13}}{2} \Rightarrow x = \frac{-7 + \sqrt{13}}{2}$

If $-4 \leq x < -2$

$x(x + 4) + 3(-x - 2) + 3 = x^2 + x - 3 = 0$

$\Rightarrow x = \frac{-1 \pm \sqrt{1+12}}{2} = \frac{-1 \pm \sqrt{13}}{2}$

$\text{in } x \in (-4, -2), x = \frac{-1 - \sqrt{13}}{2}$

If $x \in (-\infty, -4)$

$x(-x - 4) + 3(-x - 2) + 3 = -x^2 - 7x - 3$

$= -(x^2 + 7x + 3) = x = \frac{-7 \pm \sqrt{37}}{2}$

$\Rightarrow x = \frac{-7 - \sqrt{37}}{2}$

$\Rightarrow 3$

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

and many more...

JEE (MAIN)