



The number of elements in the relation  
 $R = \{(x, y) : 4x^2 + y^2 < 52, x, y \in \mathbb{Z}\}$  is



If the mean deviation about the median of the numbers  $k, 2k, 3k \dots 1000k$  is 500, then  $k^2$  is equal to



Let  $S = \{z \in \mathbb{C} : 4z^2 + \bar{z} = 0\}$ . Then  $\sum_{z \in S} |z|^2$  is equal to.



In an open organ pipe  $f_3$  and  $f_6$  are 3<sup>rd</sup> and 6<sup>th</sup> harmonic frequencies respectively and if  $f_6 - f_3 = 2200\text{Hz}$ .

Then the length of pipe is (in mm)

- a. 225
- b. 200
- c. 250
- d. 275



3 small identical bubbles of water having same charge on each coalesce to form a bigger bubble. Then the ratio of the potentials on one initial bubble & that on the resultant bigger bubble is:

(a)  $1:3^{2/3}$

(b)  $3^{2/3}:1$

(c)  $1:2^{2/3}$

(d)  $1:3^{1/3}$ .



Five positive charges each having charge  $q$  are placed at the vertices of a pentagon as shown in the figure. The electric potential ( $V$ ) & the electric field ( $\vec{E}$ ) at the center  $O$  of

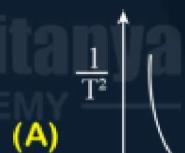
the pentagon due to the 5 positive charges are:-

a)  $V = 0, E = 0$

b)  $E = \frac{5q}{4\pi\epsilon_0 r^2}$

$$V = \frac{5q}{4\pi\epsilon_0 r}$$

c)  $V = \frac{5a}{4\pi\epsilon_0 r} \vec{E} = 0$


d)  $E = \frac{5\sqrt{3}q}{8\pi\epsilon_0 r^2} \hat{r}$





using a simple pendulum experiment  $g$  is determined by measuring its time period  $T$ . Which of the following plots

represent correct relation b/w the pendulum length  $l$  & time period  $T$ .





Which of the following mixture gives a buffer solution with  $pH=9.5$  ? Given  $PK_b(NH_4OH)=4.75$

- a) 0.2M  $NH_4OH$  (0.4l) + 0.1M HCl(1l)
- b) 0.4 M  $NH_4OH$  (1l) + 0.1M HCl(1l)
- c) 0.5 M  $NH_4OH$  (0.2l) + 0.2M HCl (0.5l)
- d) 0.2 M  $NH_4OH$  (0.5l) + 0.1M HCl(0.5l)



**S-1:  $C < O < N < F$  is the correct order in terms of first ionization enthalpy values**  
**S-II:  $S > Se > Te > Po > O$  is the correct order in terms of the magnitude of electron gain enthalpy values.**



When 1g of compound (X) is subjected to Kjeldahl's method for estimation of nitrogen, 15 mL 1M  $\text{H}_2\text{SO}_4$  was neutralized by ammonia evolved. The % of nitrogen in compound (X) is

- a) 21
- b) 0.21
- c) 42
- d) 0.42



Name of IUPAC of the following



1. 2-Bromo-5-methyl propanoate
2. n-propyl-1-bromo-4methyl hexanoate
3. 2-Bromo-5-methyl hexyl propanoate
4. n-propyl-2-bromo-5-methyl heptanoate



The dibromo compound [P] of molecular formula ( $C_9H_{10}Br_2$ ) when heated with excess Sodaamide followed by treatment with dilute HCl gives [Q]. On warming [Q] with mercuric sulphate dilute sulphuric acid yield (R) which gives positive iodoform test but negative tollen's test. The compound [P] is



100 g of 98%  $\text{H}_2\text{SO}_4$  of aqueous solution is mixed with 100 g of 49%  $\text{H}_2\text{SO}_4$  of aqueous solution. The mole fraction of the  $\text{H}_2\text{SO}_4$  is.

- a) 0.667
- b) 0.336
- c) 0.1
- d) 0.9



If  $\lim_{x \rightarrow 0} \frac{e^{(a-1)x} + 2\cos bx + (c-2)e^{-x}}{x \cos x - \log_e(1+x)} = 2$ , then  $a^2 + b^2 + c^2$  is equal to?



Let the domain of function

$$f(x) = \log_3 \log 5 \left( 7 - \log_2 (x^2 - 10x + 85) \right) + \sin^{-1} \left( \left| \frac{3x-7}{17-x} \right| \right) \text{ be } (\alpha, \beta)$$

Then  $\alpha + \beta$  is equal



$\cos(\alpha + \beta) = -\frac{1}{10}$  and  $\sin(\alpha - \beta) = \frac{3}{8}$  where  $0 < \alpha < \frac{\pi}{3}$  &  $0 < \beta < \frac{\pi}{4}$   
if  $\tan 2\alpha = \frac{3(1-\gamma\sqrt{5})}{\sqrt{11}(s+\sqrt{5})}$ ,  $\gamma, s \in N$ , then  $r + s$  is equal to \_\_\_\_\_



The area of the region  $A = \{(x, y) : 4x^2 + y^2 \leq 8 \text{ and } y^2 \leq 4x\}$  is

- A)  $\pi/2 + 2$
- B)  $\frac{\pi}{2} + \frac{1}{3}$
- C)  $\pi + \frac{2}{3}$
- D)  $\pi + 4$



let  $P(10, 2\sqrt{15})$  be a point on the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  whose foci are  $S$  and  $S'$ . If the length of its latus rectum is 8 then the square of the area of  $\triangle PSS'$  is equal to

- A) 900
- B) 4200
- C) 1462
- D) 2700 .

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY

**Sri Chaitanya**  
ACADEMY

Sri Chaitanya  
ACADEMY