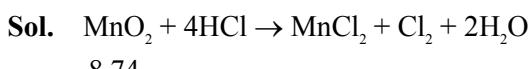


MEMORY BASED QUESTIONS JEE-MAIN EXAMINATION – JANUARY 2026

(HELD ON WEDNESDAY 21st JANUARY 2026)

TIME : 3:00 PM TO 6:00 PM


CHEMISTRY

TEST PAPER WITH SOLUTION

SECTION-A

1. When 8.74 g MnO_2 is treated with HCl then what will be the weight of $\text{Cl}_2(\text{g})$, obtained :
 [Molar mass of MnO_2 = 87.4 g/mol]
 (1) 7.1 g (2) 17.1 g
 (3) 14.2 g (4) 3.55 g

Ans. (1)

$$\frac{8.74}{87.4} \text{ Excess}$$

$$= 0.1 \text{ mole} \quad 0.1 \text{ mole}$$

$$\text{Wt. of } \text{Cl}_2 \text{ obtained} = 0.1 \times 71 = 7.1 \text{ g}$$

2. Calculate Bond Energy of C – H bond in CH_4 .
 Given : ΔH_f of $\text{CH}_4(\text{g}) = -x \text{ kJ/mol}$

$$\Delta H_{\text{sub}} \text{ of carbon} = y \text{ kJ/mol}$$

$$\text{B.E. of H – H} = z \text{ kJ/mol.}$$

$$\begin{array}{ll} (1) \frac{x-y+z}{4} & (2) \frac{y+2z+x}{4} \\ (3) \frac{y-2z-x}{4} & (4) \frac{2y-z+x}{4} \end{array}$$

Ans. (2)

$$-x = (\Delta H_{\text{sub}} \text{ of carbon}) + 2 \times (\text{B.E. of H – H})$$

$$-4 \times (\text{B.E. of C – H})$$

$$-x = y + 2z - 4 (\text{B.E. of C – H})$$

$$\text{B.E. of C – H} = \frac{y+2z+x}{4}.$$

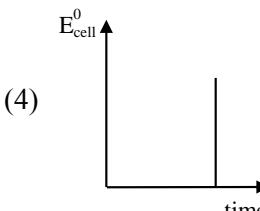
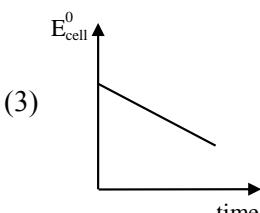
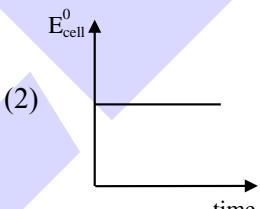
3. Following transition are made by an electron in a hydrogen like species. Find energy order of emitted photon :

(A) 1st line of Lyman Series
 (B) 2nd line of Balmer Series
 (C) 3rd line of Paschen Series
 (D) 4th line of Brackett Series
 (1) D > A > B > C (2) A > B > C > D
 (C) B > C > D > A (4) A > C > B > D

Ans. (2)

Sol. $\Delta E = 13.6Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$

Series	n_1	n_2
--------	-------	-------

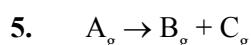



1 st line (Lyman)	1	2
------------------------------	---	---

2 nd line (Balmer)	2	4
-------------------------------	---	---

3 rd line (Paschen)	3	6
--------------------------------	---	---

4 th line (Brackett)	4	8
---------------------------------	---	---

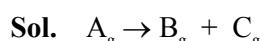
4. For a Daniel cell, select correct variation of E_{cell}^0 with time


Ans. (2)

Sol. E_{cell}^0 remain constant with time.

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor


Check Now

Initial pressure of A is 1 bar after 100 min. total pressure becomes 1.5 bar. Find value of rate constant of the reaction assuming first order reaction.

(1) $6.9 \times 10^{-4} \text{ min}^{-1}$ (2) $6.9 \times 10^{-3} \text{ min}^{-1}$
 (3) $6.9 \times 10^{-5} \text{ min}^{-1}$ (4) $6.9 \times 10^{-2} \text{ min}^{-1}$

Ans. (2)

$$\begin{array}{ccc} 1 & - & - \\ 1-P & P & P \end{array}$$

$$P_{\text{total}} = 1 + P$$

$$1.5 = 1 + P$$

$$P = 0.5$$

$$K = \frac{1}{100} \ln \frac{1}{0.5}$$

$$= \frac{0.693}{100}$$

$$= 6.9 \times 10^{-3} \text{ min}^{-1}$$

6. Statement-I : The correct order for radius is $Al > Mg > Mg^{2+} > Al^{3+}$

Statement-II : Atomic size always depends on electronegativity.

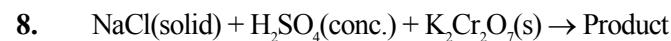
(1) Both statements I and II are correct.
 (2) Both statements I and II are false.
 (3) Statement I is correct and II is false.
 (4) Statement I is false and II is correct.

Ans. (2)

Sol. Correct order of size is $Mg > Al > Mg^{2+} > Al^{3+}$

Atomic size depends mainly upon $Z_{\text{effective}}$ and shell number.

7. **Statement-I** : Bond dissociation energy order is : $Cl_2 > Br_2 > F_2 > I_2$


Statement-II : Bond dissociation energy is independent of bond order

(1) Both statements I and II are correct.
 (2) Both statements I and II are false.
 (3) Statement I is correct and II is false.
 (4) Statement I is false and II is correct.

Ans. (3)

Sol. Bond energy order is $Cl_2 > Br_2 > F_2 > I_2$

Bond energy increases with increase in bond order.

(1) Product is CrO_2Cl_2 and oxidation state of Cr = +6
 (2) Product is $Cr_2O_2Cl_2$ and oxidation state of Cr = +6
 (3) Product is $Cr_2O_2Cl_2$ and oxidation state of Cr = +3
 (4) Product is CrO_2Cl_2 and oxidation state of Cr = +3

Ans. (1)

Sol. Chromyl chloride test : Product is deep red vapours of CrO_2Cl_2 in which oxidation state of Cr is +6.

9. Which of following is correct order of bond length?

(1) $C-H < C\equiv N < C=O < C-O$
 (2) $C\equiv N < C-H < C-O < C=O$
 (3) $C-H < C\equiv N < C=O < C-O$
 (4) $C-O < C\equiv N < C=O < C-H$

Ans. (1)

Sol. $C-H \quad 107 \text{ pm}$

$C\equiv N \quad 116 \text{ pm}$

$C-O \quad 143 \text{ pm}$

$C=O \quad 121 \text{ pm}$

Data based (From NCERT)

10. Statement-I : The correct order of electron affinity is $Cl > Br > S > O$

Statement-II : Correct order of ionic character is $PbCl_2 < PbCl_4, UF_6 < UF_4, SnCl_4 > SnCl_2$

(1) Statement I is correct and statement II is incorrect.

(2) Both statement I and II are correct.

(3) Statement I is incorrect and statement II is correct.

(4) Both statement I and II are incorrect.

Ans. (1)

Sol. Generally on moving down the group electron affinity decreases and on moving across the period electron affinity increase.

In the periodic table Cl has maximum electron affinity.

Predict your JEE Main 1 2026 percentile

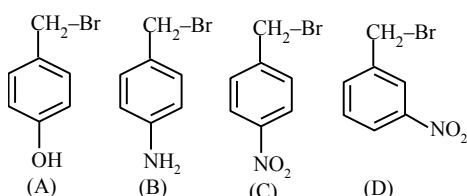
Try ALLEN's FREE Percentile Predictor

Check Now

11. Statement-I : Among $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$ and $[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$, the more stable complex is $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$.

Statement-II : Magnetic moment of $\text{K}_3[\text{Fe}(\text{CN})_6] > \text{K}_4[\text{Fe}(\text{CN})_6]$.

(1) Statements I and II both are correct.
 (2) Statement I is correct and Statement II is incorrect.
 (3) Statement I is incorrect and statement II is correct.
 (4) Both statements I and II are incorrect.


Ans. (1)

Sol. $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$ is more stable than $[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$.

For : $\text{K}_3[\text{Fe}(\text{CN})_6]$, $\mu = \sqrt{1(1+2)} = \sqrt{3}$ B.M.

For : $\text{K}_4[\text{Fe}(\text{CN})_6]$, $\mu = \sqrt{0}$ B.M.

12. Rate of reaction of nucleophilic substitution with KCN in polar protic solvent

(1) $\text{A} > \text{B} > \text{C} > \text{D}$ (2) $\text{B} > \text{A} > \text{C} > \text{D}$
 (3) $\text{A} > \text{B} > \text{D} > \text{C}$ (4) $\text{B} > \text{A} > \text{D} > \text{C}$

Ans. (4)

Sol. This is $\text{S}_{\text{N}}1$ reaction.

Rate of $\text{S}_{\text{N}}1$ reaction \propto stability of carbocation

13. Match correctly from the reagents given in **Column-I** with the named reaction given in **Column-II**.

Column-I		Column-II	
(P)	Pd-BaSO_4	(1)	Etard reaction
(Q)	$\text{CrO}_2\text{Cl}_2 + \text{CS}_2$	(2)	Stephen's reduction
(R)	$\text{SnCl}_2 + \text{HCl}$	(3)	Gattermann's Koch reaction
(S)	$\text{CO} + \text{HCl} + \text{AlCl}_3$ anhydrous	(4)	Rosenmund's reduction

	P	Q	R	S
(1)	1	4	2	3
(2)	3	2	4	1
(3)	4	1	2	3
(4)	1	3	4	2

Ans. (3)

Sol. 0

14. Match the **list-I** with **list-II**

	list-I		list-II
(P)	Cis-2-Butene, trans-2-butene	(1)	Functional isomers
(Q)	Diethyl ether, Butanol	(2)	Stereoisomers
(R)	1-Butene, 2-Butene	(3)	Position isomers
(S)	n-Pentane, Isopentane	(4)	Chain isomers

	P	Q	R	S
(1)	2	3	4	1
(2)	2	1	3	4
(3)	3	2	4	1
(4)	4	2	1	3

Ans. (2)

Sol. 0

15. Which of the following statement is/are correct?

(a) Nucleotide containing 1,4-linkage.
 (b) Quaternary structure of protein is compact folded structure.
 (c) During denaturation of protein secondary and tertiary structure destroyed and primary structure retained.
 (d) Enthalpy of enzymatic hydrolysis of sucrose is greater than acid catalysed hydrolysis of sucrose.
 (1) a, b, c (2) b, c
 (3) a, d (4) b, c, d

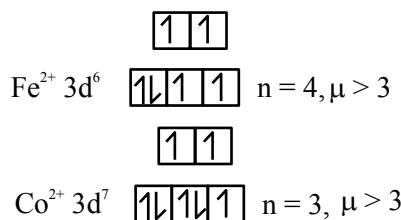
Ans. (2)

Sol. 0

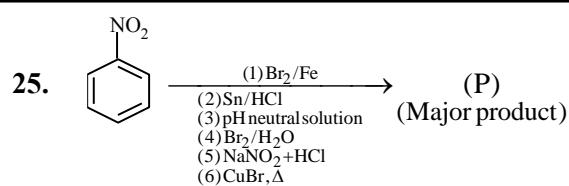
Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

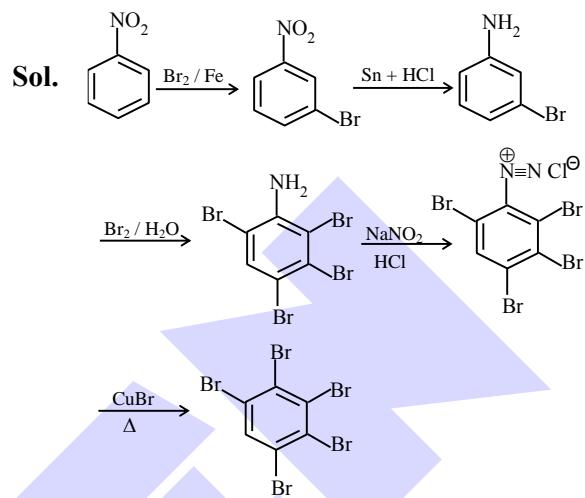


24. Among the following V^{3+} , Ti^{2+} , Ni^{2+} , Fe^{2+} , Co^{2+} for which spin only magnetic moment > 3 , and which can form high spin octahedral complex. Find the sum of unpaired electrons in those complexes.


Ans. (7)

Sol. $V^{3+} 3d^3$, $Ti^{2+} 3d^2$, $Ni^{2+} 3d^8$, $Fe^{2+} 3d^6$, $Co^{2+} 3d^7$

Only Fe^{2+} and Co^{2+} can form high spin octahedral complex.



\therefore Number of unpaired electrons $= 4 + 3 = 7$

Number of bromine atom in major product?

Ans. (5)

Number of Br atom in major product (P) = 5

Predict your JEE Main 1 2026 percentile

Try ALLEN's FREE Percentile Predictor

Check Now

ALLEN

For Class 12th Pass Students

**RISE. REPEAT.
RANK UP IN JEE**

JOIN LEADER COURSE

JEE (Main+Adv.) 2027

26th Mar & 15th Apr

Know more

ALLEN ONLINE

**Think JEE 2027
will be your **best shot?****

Join the Leader Online Course!

Win up to

90% scholarship

via ASAT

Enrol Now

Get REAL exam practice
for **JEE Main 2026**

with the

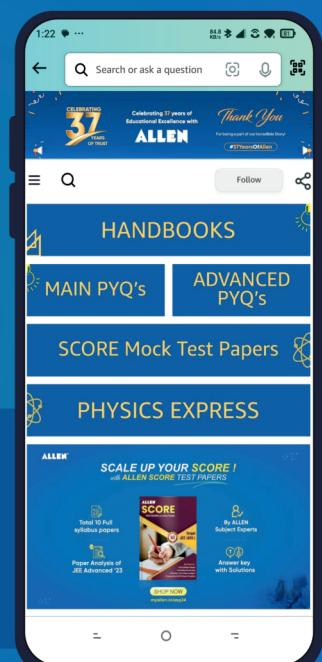
Major Online Test Series!

13 full-syllabus tests

100+ additional mock tests

50,000+ teacher-
recommended Qs. & more

Buy Now


ALLEN

Get The Latest
IIT-JEE Special Books
at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

HANDBOOKS | ADVANCED-QB | SCORE PAPERS
PHYSICS EXPRESS | MAIN PYQ's | Adv. PYQ's

SHOP NOW

Available in
HINDI & ENGLISH