

Roll No. _____

Total Printed Pages : 8

Total Questions : 20

Time : 3 Hours

Maximum Marks : 70

हायर सेकेण्डरी परीक्षा / Higher Secondary Examination
(मुख्य / Main) वर्ष / Year - 2026

265307

A

SET / सेट

भौतिकशास्त्र - PHYSICS

(Hindi & English Versions)

निर्देश :

- (i) सभी प्रश्न अनिवार्य हैं। प्रश्न क्रमांक 6 से 20 तक प्रत्येक प्रश्न में आंतरिक विकल्प दिए गए हैं।
- (ii) प्रश्न क्रमांक 1, 2 व 4 में प्रत्येक प्रश्न पर 6 अंक और प्रत्येक उपप्रश्न पर 1 अंक निर्धारित है।
- (iii) प्रश्न क्रमांक 3 व 5 में प्रत्येक प्रश्न पर 5 अंक और प्रत्येक उपप्रश्न पर 1 अंक निर्धारित है।
- (iv) प्रश्न क्रमांक 6 से 12 तक प्रत्येक प्रश्न पर 2 अंक निर्धारित हैं। प्रत्येक उत्तर के लिए शब्द सीमा लगभग 30 शब्द है।
- (v) प्रश्न क्रमांक 13 से 16 तक प्रत्येक प्रश्न पर 3 अंक निर्धारित हैं। प्रत्येक उत्तर के लिए शब्द सीमा लगभग 75 शब्द है।
- (vi) प्रश्न क्रमांक 17 से 20 तक प्रत्येक प्रश्न पर 4 अंक निर्धारित हैं। प्रत्येक उत्तर के लिए शब्द सीमा लगभग 120 शब्द है।
- (vii) आवश्यकतानुसार स्वच्छ एवं नामांकित चित्र बनाइए।

Instructions :

- (i) All questions are compulsory. Internal options are given in each question from Question Nos. 6 to 20.
- (ii) Question Nos. 1, 2 and 4 each carries 6 marks and each sub-question carries 1 mark.
- (iii) Question Nos. 3 and 5 each carries 5 marks and each sub-question carries 1 mark.
- (iv) Each question from question nos. 6 to 12 carries 2 marks and word limit for each answer is approx. 30 words.
- (v) Each question from question nos. 13 to 16 carries 3 marks and word limit for each answer is approx. 75 words.
- (vi) Each question from question nos. 17 to 20 carries 4 marks and word limit for each answer is approx. 120 words.
- (vii) Draw neat and labelled diagram wherever necessary.

1 प्रत्येक प्रश्न में दिये गये विकल्पों में से सही विकल्प चुनकर लिखिये :

1×6=6

(a) आदर्श विद्युत द्विध्रुव का आकार होता है -

(i) शून्य (ii) अनन्त
(iii) एक (iv) उपरोक्त में से कोई नहीं

(b) पृथ्वी का मानक विभव है -

(i) शून्य (ii) अनन्त
(iii) एक (iv) उपरोक्त में से कोई नहीं

(c) अवरक्त तरंगों की तरंगदैर्घ्य परास है -

(i) 400 nm से 700 nm तक (ii) 1 nm से 400 nm तक
(iii) 1 mm से 0.1 m तक (iv) 700 nm से 1 mm तक

(d) यदि आपतन कोण का मान किसी तल के लिये 60° है, तब उस तल पर परावर्तन कोण होगा-

(i) 30° (ii) 45°
(iii) 75° (iv) 60°

(e) इलेक्ट्रॉन का विशिष्ट आवेश होता है-

(i) 1.9×10^{-31} C/kg (ii) 1.6×10^{-19} C/kg
(iii) 1.76×10^{11} C/kg (iv) 1.76×10^{-11} C/kg

(f) P-n संधि डायोड में अवक्षय पर्त की मोटाई होती है -

(i) 1 m (ii) 1 μ m
(iii) 1 nm (iv) 1 pm

Choose and write the correct option from the options given in each question:

(a) The size of ideal dipole is _____.

(i) Zero (ii) Infinite
(iii) One (iv) None of the above

(b) The standard potential of earth is _____.

(i) Zero (ii) Infinite
(iii) One (iv) None of the above

(c) The wavelength range of infra-red waves is _____.

(i) 400 nm to 700 nm (ii) 1 nm to 400 nm
(iii) 1 mm to 0.1 m (iv) 700 nm to 1 mm

(d) If the value of angle of incidence for a surface is 60° , then angle of reflection at that plane will be _____.

(i) 30° (ii) 45°
(iii) 75° (iv) 60°

(e) The specific charge of electron is :

(i) 1.9×10^{-31} C/kg (ii) 1.6×10^{-19} C/kg
(iii) 1.76×10^{11} C/kg (iv) 1.76×10^{-11} C/kg

(f) In P-n junction diode the width of depletion layer is :

(i) 1 m (ii) 1 μm
(iii) 1 nm (iv) 1 pm

2 स्तंभ 'अ' को स्तंभ 'ब' से मिलाकर सही जोड़ी लिखिये :

1×6=6

स्तंभ 'अ'

स्तंभ 'ब'

(a) विद्युत फ्लक्स (i) $\mu_0 nI$
(b) विभव प्रवणता (ii) वोल्ट \times सेकण्ड
(c) चुम्बकीय फ्लक्स (iii) $\mu_0 nI/2$
(d) गतिक वि.वा.ब. (iv) वोल्ट \times मीटर
(e) परिनालिका के अंदर चुम्बकीय क्षेत्र (v) वोल्ट \times मीटर $^{-1}$
(f) परिनालिका के किसी एक सिरे पर चुम्बकीय क्षेत्र (vi) वोल्ट

Match the Column 'A' with Column 'B' and write the correct pair :

Column 'A'

Column 'B'

(a) Electric flux (i) $\mu_0 nI$
(b) Potential gradient (ii) Volt \times second
(c) Magnetic flux (iii) $\mu_0 nI/2$
(d) Motional emf (iv) Volt \times meter
(e) Magnetic field inside solenoid (v) Volt \times meter $^{-1}$
(f) Magnetic field at any end of solenoid (vi) Volt

3 प्रत्येक प्रश्न का एक वाक्य में उत्तर दीजिये -

1×5=5

(a) धारा घनत्व, विशिष्ट चालकता तथा विद्युत क्षेत्र की तीव्रता के पदों में ओम का नियम लिखिये।
(b) चुम्बकशीलता का विमीय सूत्र लिखिये।
(c) LCR परिपथ की प्रतिबाधा का सूत्र लिखिये।
(d) प्रकाश के अपवर्तन की घटना में उसका कौन-सा गुण अपरिवर्तित रहता है?
(e) P-प्रकार के अर्द्धचालक में बहुसंख्यक आवेश वाहक कौन होते हैं?

Write answer of each question in one sentence :

- State Ohm's law in terms of current density, specific conductance and electric field intensity.
- Write dimensional formula of magnetic permeability.
- Write the formula of impedance of LCR circuit.
- In phenomenon of refraction of light, which property of it remain unchanged?
- Who are the majority charge carrier in P-type semiconductor?

4 उचित शब्द के द्वारा रिक्त स्थानों की पूर्ति कर लिखिये :

$1 \times 6 = 6$

- चुम्बकीय फ्लक्स घनत्व _____ राशि है।
- जल शोधक में _____ किरणों के लैम्पों का उपयोग जीवाणुओं को मारने में होता है।
- एक अध्रुवित तरंग के लिये विस्थापन, समय के साथ, यादृच्छिकता बदलता रहता है, यद्यपि यह सदैव तरंग संचरण की दिशा के _____ रहता है।
- फोटॉन का विराम द्रव्यमान _____ होता है।
- प्लांक नियतांक का मान _____ होता है।
- जरमेनियम डायोड के लिये देहली वोल्टता लगभग _____ वोल्ट होती है।

Fill in the blanks with appropriate word and write:

- Magnetic flux density is _____ quantity.
- The lamps of _____ rays are used to kill germs in water purifiers.
- For an unpolarized wave the displacement will be randomly changing with time though it will always be _____ to the direction of propagation.
- The rest mass of photon is _____.
- The value of Planck's constant is _____.
- For germanium diode threshold voltage is nearly _____ volt.

5 सत्य अथवा असत्य लिखिये :

$1 \times 5 = 5$

- गुणता कारक $\frac{\omega_r L}{R}$ है।
- विवर्तन की घटना में ऊर्जा का पुनर्वितरण होता है।
- उपयुक्त तापन के द्वारा मुक्त इलेक्ट्रॉनों को पर्याप्त तापीय ऊर्जा दी जा सकती है जिससे कि वे धातु से बाहर आ सके।
- γ -क्षय में निम्न ऊर्जा के फोटॉन उत्सर्जित होते हैं।
- अर्द्धचालकों का ताप बढ़ाने से, उनकी चालकता कम हो जाती है।

Write True or False :

(a) The quality factor is $\frac{\omega_r L}{R}$. 5

(b) The energy redistribution takes place in phenomenon of diffraction. 6

(c) By suitably heating, sufficient thermal energy can be imparted to the free electrons to enable them to come out of the metal. 7

(d) In γ -decay low energy photons are emitted. 8

(e) On increasing the temperature of semiconductors, their conductance becomes less. 9

6 दिखाइये कि विद्युत क्षेत्र के किसी समान्तर पृष्ठ से गुज़ारने वाला विद्युत फ्लक्स का मान शून्य होता है। 2

Show that the electric flux passing through a surface parallel to electric field is zero. 10

अथवा / OR

आयतन आवेश घनत्व क्या है? इसका S.I. मात्रक लिखिये। 11

What is volume charge density? Write its S.I. unit. 12

7 ओह्मीय तथा अनओह्मीय प्रतिरोध क्या है? 2

What are ohmic and non-ohmic resistances? 13

अथवा / OR

आन्तरिक प्रतिरोध क्या है? इसका विमीय सूत्र लिखिए। 14

What is internal resistance? Write its dimensional formula. 15

8 एम्पियर का परिपथीय नियम लिखिये। 2

State Ampere's circuital law. 16

अथवा / OR

प्रतिचुम्बकीय तथा अनुचुम्बकीय पदार्थों में दो अन्तर लिखिये। 17

Write two differences between diamagnetic and paramagnetic substances. 18

9 विद्युत चुम्बकीय तरंगों के दो गुण लिखिये। 2

Write two properties of electromagnetic waves. 19

अथवा / OR

घटती आवृत्ति के क्रम में विभिन्न विद्युत चुम्बकीय तरंगों के नाम लिखिये। 20

Write the names of different electromagnetic waves in decreasing order of their frequencies. 21

10 एक लेंस की क्षमता $-5D$ है। इसकी फोकस दूरी ज्ञात करो। लेंस का नाम क्या है? $1+1=2$

The power of lens is $-5D$. Find its focal length. What is the name of lens?

अथवा / OR

किसी छोटी दूरबीन के अभिदृश्यक की फोकस दूरी 144 cm तथा नेत्रिका की फोकस दूरी 6.0 cm है। दूरबीन की आवर्धन क्षमता कितनी है? अभिदृश्यक तथा नेत्रिका के बीच पृथक्न दूरी क्या है?

A small telescope has an objective lens of focal length 144 cm and an eyepiece of focal length 6.0 cm . What is the magnifying power of telescope? What is the separation between the objective and the eyepiece?

11 दे ब्रॉग्ली तरंग क्या है? गतिमान कण के लिये इसका सूत्र लिखिये। $1+1=2$

What is de-Broglie wave? Write formula of it for moving particle.

अथवा / OR

आइन्सटीन का प्रकाश विद्युत समीकरण लिखिये।

Write Einstein's photoelectric equation.

12 बोर मॉडल का उपयोग करके किसी हाइड्रोजन परमाणु में $n=1$ तथा 2 स्तरों पर इलेक्ट्रॉन की ऊर्जा परिकलित कीजिये। 2

Using the Bohr's model, calculate the energy of the electron in a hydrogen atom for $n = 1$ and 2 levels. <https://www.mpboardonline.com>

अथवा / OR

1 ग्राम पदार्थ के समतुल्य ऊर्जा को परिकलित कीजिये।

Calculate the energy equivalent of 1 g of substance.

13 अनुगमन वेग क्या है? धारा घनत्व तथा अनुगमन वेग में सम्बन्ध स्थापित कीजिये। $1+2=3$
What is drift velocity? Establish relationship between current density and drift velocity.

अथवा / OR

सेल के आंतरिक प्रतिरोध, वि.वा. बल तथा टर्मिनल वोल्टेज में सम्बन्ध स्थापित कीजिये।
Establish relationship between internal resistance, emf and terminal voltage of cell.

14 चल कुण्डली धारामापी की सुग्राहिता को परिभाषित कीजिए। उसका सूत्र लिखिए एवं इसका मान अधिकतम होने की शर्तें लिखिए। 3

Define the sensitivity of moving coil galvanometer. Write its formula and write conditions for maximum value of it.

अथवा / OR

बायो-सावार्ट का नियम समझाइये।

Explain Biot-Savart's law.

15 बोर के परमाणु मॉडल के तीन अभिगृहीत लिखिये।

3

State three postulates of Bohr's atomic model.

अथवा / OR

नाभिकीय बल क्या है? इनके कोई दो गुण लिखिए।

What is nuclear force? Write any two properties of it.

16 N-प्रकार तथा P-प्रकार के अर्द्धचालकों में कोई तीन अंतर लिखिये।

3

State three difference between N-type and P-type semiconductors.

अथवा / OR

P-N संधि डायोड का अर्द्धतरंग दिष्टकारी के रूप में उपयोग का वर्णन निम्न शीर्षकों के अंतर्गत कीजिये :

(i) सिद्धान्त

(ii) विद्युत परिपथ

(iii) कार्यविधि

Explain use of P-N junction diode as a half wave rectifier under the following heads :

(i) Principle

(ii) Electric circuit

(iii) Working

17 उत्तल पृष्ठ से अपवर्तन का सूत्र $\frac{n}{v} - \frac{1}{u} = \frac{n-1}{R}$ निगमित कीजिये।

4

Derive formula $\frac{n}{v} - \frac{1}{u} = \frac{n-1}{R}$ of refraction from convex surface.

अथवा / OR

संपर्क में रखे पतले लेंसों की फोकस दूरी का व्यंजक निगमित कीजिये।

Derive an expression for focal length of thin lenses kept in contact.

18 बिन्दु आवेश के कारण उसके निकट स्थित बिन्दु पर विद्युत विभव के लिए व्यंजक निगमित कीजिए।

4

Derive an expression for electric potential at a point situated near the point due to a point charge.

अथवा / OR

संधारित्रों के श्रेणी संयोजन तथा समान्तर संयोजन में तुल्य धारिताओं के व्यंजक निगमित कीजिये।

Derive expressions for equivalent capacitances in series combination and

parallel combination of capacitors.

19 ट्रांसफॉर्मर में होने वाली विभिन्न ऊर्जा हानियाँ समझाइये।

Explain different energy losses in transformer.

अथवा / OR

फैराडे के विद्युत-चुम्बकीय प्रेरण के नियम, लिखिये एवं द्वितीय नियम की व्याख्या कीजिये।

State Faraday's laws of electromagnetic induction and explain second law.

20 (i) क्रांतिक कोण क्या है? माध्यम के अपवर्तनांक तथा क्रांतिक कोण में सम्बन्ध 1+2+1=4
स्थापित कीजिये।

(ii) पूर्ण आंतरिक परावर्तन की शर्तें लिखिये।

(i) What is critical angle? Establish relationship between critical angle and refractive index of medium.

(ii) State conditions of total internal reflection.

अथवा / OR

(i) जब एकवर्णीय प्रकाश दो माध्यमों को पृथक करने वाली सतह पर आपतित होता है, तब परावर्तित एवं अपवर्तित दोनों प्रकाश की आवृत्तियाँ समान होती हैं। स्पष्ट कीजिये क्यों?

(ii) जब प्रकाश विरल से सघन माध्यम में गति करता है तो उसकी चाल में कमी आती है। क्या चाल में आई कमी प्रकाश तरंगों द्वारा संचरित ऊर्जा की कमी को दर्शाती है?

(iii) प्रकाश की तरंग अवधारणा में, प्रकाश की तीव्रता का आकलन तरंग के आयाम के वर्ग से किया जाता है। वह क्या है जो प्रकाश की फोटॉन अवधारणा में प्रकाश की तीव्रता का निर्धारण करता है?

(i) When monochromatic light is incident on a surface separating two media, the reflected and refracted light both have the same frequency as the incident frequency. Explain why?

(ii) When light travels from a rarer to denser medium, the speed decreases. Does the reduction in speed imply a reduction in the energy carried by the light wave?

(iii) In the wave picture of light, intensity of light is determined by the square of the amplitude of the wave. What determines intensity of light in the photon picture of light?

1

2

3

4

5

6

7